Citation: Bo GAO, Shan-Shan TANG, Jun-Bo LIU, Rui-Fa JIN. Computational Simulation and Electrochemically Deposited Molecularly Imprinted Polymer-coated Carbon Glass Electrode for Triclosan Detection[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1252-1260. doi: 10.14102/j.cnki.0254–5861.2011–2589 shu

Computational Simulation and Electrochemically Deposited Molecularly Imprinted Polymer-coated Carbon Glass Electrode for Triclosan Detection

  • Corresponding author: Jun-Bo LIU, liujb@ccut.edu.cn
  • Received Date: 30 August 2019
    Accepted Date: 24 November 2019

    Fund Project: the Jilin Provincial Education Department Foundation of China JJKH20170293KJ

Figures(8)

  • Triclosan, a kind of multi-purpose biocide, was widely used household cleaning and personal care products. The widespread use of triclosan has potential risk to the ecotype and human health due to its release into sediment, surface and ground water resources. A molecularly imprinted electrochemical sensor for triclosan detection in cosmetic emulsion was synthesized and characterized. In order to determine the suitable monomer and evaluate the template-monomer geometry as well as the interaction energy in the template-monomer prepolymerization mixture, a computational study was applied. We found that the complex formed by hybrid monomers (triclosan(o-phenylenediamine-co-resorcinol)) had more hydrogen bonds and larger binding energy than that by single kind of monomers (triclosan(o-phenylenediamine)2 and triclosan(resorcinol)2). Therefore, hybrid monomers were used to synthesize the imprinted electrochemical sensor, which exhibits a high sensitivity and selectivity for triclosan sensing with the detection range 0~15 ng·mL-1 and detection limit 0.41 ng·mL-1.
  • 加载中
    1. [1]

      Liu, Y.; Song, Q. J.; Wang, L. Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer. Microchem. J. 2009, 91, 222–226.  doi: 10.1016/j.microc.2008.11.007

    2. [2]

      von der Ohe, P. C.; Schmitt-Jansen, M.; Slobodnik, J.; Brack, W. Triclosan—the forgotten priority substance? Environ. Sci. Pollut. Res. 2012, 19, 585–591.  doi: 10.1007/s11356-011-0580-7

    3. [3]

      Singer, H.; Müller, S.; Tixier, C.; Pillonel, L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002, 36, 4998–5004.  doi: 10.1021/es025750i

    4. [4]

      Zhu, X.; Liu, Y.; Luo, G.; Qian, F.; Zhang, S.; Chen, J. Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption. Environ. Sci. Technol. 2014, 48, 5840–5848.  doi: 10.1021/es500531c

    5. [5]

      Wulff, G.; Sarhan, A.; Gimpel, J.; Lohmar, E. Über enzymanalog gebaute polymere, Ⅲ. zur synthese von polymerisierbaren D-glycerinsäurederivaten. Chem. Ber. 1974, 107, 3364–3376.  doi: 10.1002/cber.19741071022

    6. [6]

      Wulff, G.; Sarhan, A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl. 1972, 11, 341–344.

    7. [7]

      Wulff, G. Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim. Acta 2013, 180, 1359–1370.  doi: 10.1007/s00604-013-0992-9

    8. [8]

      Cao, Y.; Feng, T.; Xu, J.; Xue, C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens. Bioelectron. 2019, 141, 111447, 1–18.

    9. [9]

      Sanjuán, A. M.; Reglero Ruiz, J. A.; García, F. C.; García, J. M. Recent developments in sensing devices based on polymeric systems. React. Funct. Polym. 2018, 133, 103–125.  doi: 10.1016/j.reactfunctpolym.2018.10.007

    10. [10]

      Chen, L. G.; Liu, J.; Zeng, Q. L.; Wang, H.; Yu, A. M.; Zhang, H. Q.; Ding, L. Preparation of magnetic molecularly imprinted polymer for the separation of thtracycline antibiotics form egg and tissue samples. J. Chromatogr. A 2009, 1216, 3710–3719.  doi: 10.1016/j.chroma.2009.02.044

    11. [11]

      Blanco-López, M. C.; Lobo-Castañón, M. J.; Miranda-Ordieres, A. J.; Tuñón-Blanco, P. Electrochemical sensors based on molecularly imprinted polymers. Trac. Trends Anal. Chem. 2004, 23, 36–48.  doi: 10.1016/S0165-9936(04)00102-5

    12. [12]

      Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70.  doi: 10.1016/j.bios.2017.08.058

    13. [13]

      Piyush, S. S.; Agnieszka, P. L.; Francis, D. S.; Wlodzimierz, K. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204.  doi: 10.1007/s00216-011-5696-6

    14. [14]

      Qader, B.; Baron, M.; Hussain, I.; Sevilla, J. M.; Johnson, R. P.; Gonzalez-Rodriguez, J. Electrochemical determination of disulfoton using a molecularly imprinted poly-phenol polymer. Electrochim. Acta 2019, 295, 333–339.  doi: 10.1016/j.electacta.2018.10.127

    15. [15]

      Beytur, M.; kardasş, F.; Akyildddirim, O.; Özkan, A.; Bankoğlu, B.; Yüksek, H.; Yola, M. L.; Atar, N. A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J. Mol. Liq. 2018, 251, 212–217.  doi: 10.1016/j.molliq.2017.12.060

    16. [16]

      Yola, M. L.; Cöde, C.; Atar, N. Molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes for electrochemical recognition of bilirubin. Electrochim. Acta 2017, 246, 135–140.  doi: 10.1016/j.electacta.2017.06.053

    17. [17]

      Yola, M. L.; Atar, N. Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind. Eng. Chem. Res. 2017, 56, 7631–7639.  doi: 10.1021/acs.iecr.7b01379

    18. [18]

      Atar, N.; Yola, M. L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci. 2016, 362, 315–322.  doi: 10.1016/j.apsusc.2015.11.222

    19. [19]

      Ertan, B.; Eren, T.; Ermiş, İ.; Saral, H.; Atar, N.; Yola, M. L. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/muti-walled carbon nanotubes. J. Colloid Interf. Sci. 2016, 470, 14–21.  doi: 10.1016/j.jcis.2016.02.036

    20. [20]

      Liu, J. B.; Tang, S. S.; Dai, Z. Q.; Wang, Y.; Gao, Q.; Jin, R. F. Computer simulation and experimental investigations of phenobarbital molecular imprinting system. Chin. J. Struct. Chem. 2016, 35, 1840–1848.

    21. [21]

      Nicholls, I. A.; Anderson, H. S.; Golker, K.; Henschel, H.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J. G.; Wikman, S. Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development. Anal. Bioanal. Chem. 2011, 400, 1771–1786.  doi: 10.1007/s00216-011-4935-1

    22. [22]

      Nicholls, I. A.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M. Computational strategies for the design and study and molecularly imprinted materials. Ind. Eng. Chem. Res. 2013, 52, 13900–13909.  doi: 10.1021/ie3033119

    23. [23]

      Levi, L.; Raim, V.; Srebnik, S. A brief review of coarse-grained and other computational studies of molecularly imprinted polymers. J. Mol. Recognit. 2011, 24, 883–891.  doi: 10.1002/jmr.1135

    24. [24]

      Su, T. T.; Liu, J. B.; Tang, S. S.; Chang, H. B.; Jin, R. F. Theoretical study on the structures and properties of phenobarbital imprinted polymers. Chin. J. Struct. Chem. 2014, 33, 1421–1430.

    25. [25]

      Wei, S.; Jakusch, M.; Mizaikoff, B. Investigating the mechanisms of 17β-estradiol imprinting by computational prediction and spectroscopic analysis. Anal. Bioanal. Chem. 2007, 389, 423–431.  doi: 10.1007/s00216-007-1358-0

    26. [26]

      Lu, C.; Tang, Z.; Gao, X.; Ma, X.; Liu, C. Computer-aided design of magnetic dummy molecularly imprinted polymers for solid-phase extraction of ten phthalates from food prior to their determination by GC-MS/MS. Microchim. Acta 2018, 185, 373.  doi: 10.1007/s00604-018-2892-5

    27. [27]

      Rohani, F. G.; Mohadesi, A.; Ansari, M. A new diosgenin sensor based on molecularly imprinted polymer of para aminobenzoic acid selected by computer-aided design. J. Pharmaceut. Biomed. 2019, 174, 552–560.  doi: 10.1016/j.jpba.2019.04.044

    28. [28]

      Wang, Y.; Liu, J.; Tang, S. S.; Jin, R. F. Preparation of melamine molecularly imprinted polymer by computer-aided design. J. Sep. Sci. 2015, 38, 2647–2654.  doi: 10.1002/jssc.201500375

    29. [29]

      Pace, S. J.; Nguyen, E.; Baria, M. P.; Mojica, E. E. Use of computational modeling in the preparation and evaluation of surface imprinted xerogels for binding tetracycline. Microchim. Acta 2015, 182, 69–76.  doi: 10.1007/s00604-014-1305-7

    30. [30]

      Yola, M. L.; Atar, N.; Eren, T.; Karimi-Maleh, H.; Wang, S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 2015, 5, 65953–65962.  doi: 10.1039/C5RA07443F

    31. [31]

      Motia, S.; Albert-Tudor, I.; Antonio-Ribeiro, P.; Raposo M.; Bouchikhi B.; El-Bari, N. Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Sci. Total Environ. 2019, 664, 647–658.  doi: 10.1016/j.scitotenv.2019.01.331

    32. [32]

      Ramos, A. I.; Braga, S. S.; Almeida-Paz, F. A. Triclosan. Acta Crystallogr. C 2009, 65, O404–O405.  doi: 10.1107/S0108270109026511

    33. [33]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc.; Wallingford CT, Gaussian 09, Revision A. 02 2016.

  • 加载中
    1. [1]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    2. [2]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    6. [6]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    10. [10]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    11. [11]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    12. [12]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    13. [13]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    14. [14]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    15. [15]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    18. [18]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

Metrics
  • PDF Downloads(2)
  • Abstract views(322)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return