Citation: Jing-Jing CHEN, Yu-Ying ZHENG. Quasi-3-D Gadolinium Iodate Constructed from Infinite Polyiodate: Structure, Green-emission and UV Light-driven Degradation on Organic Dye[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1323-1330. doi: 10.14102/j.cnki.0254–5861.2011–2581 shu

Quasi-3-D Gadolinium Iodate Constructed from Infinite Polyiodate: Structure, Green-emission and UV Light-driven Degradation on Organic Dye

  • Corresponding author: Yu-Ying ZHENG, yyzheng@fzu.edu.cn
  • Received Date: 24 August 2019
    Accepted Date: 27 September 2019

Figures(8)

  • A new gadolinium iodate has been synthesized via hydrothermal method, and its structure was determined as [Gd(H2O)(IO3)2(IO3H2O)]n (1) by X-ray single-crystal diffraction. The 2-D layer is built from the linkage of Gd2O16I4 dimer via μ2/μ3-bridged iodates, and the quasi-3-D network is generated via weak I···O bonds and hydrogen bonds. FTIR, powder X-ray diffraction (PXRD) and UV-Vis spectra were conducted to characterize the as-synthesized sample. Interestingly, 1 exhibits green emission, which might be assigned to electronic transfer within iodate groups. The UV adsorption of 1 hints its UV light-driven photocatalytic property, and as expected, it exhibits photocatalytic activity for the degradation of rhodamine B. Theoretical calculation was conducted to give structure/property correlation.
  • 加载中
    1. [1]

      Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.  doi: 10.1039/B905604C

    2. [2]

      Hu, C. L.; Mao, J. G. Recent advances on second-order NLO materials based on metal iodates. Coord. Chem. Rev. 2015, 288, 1–17.  doi: 10.1016/j.ccr.2015.01.005

    3. [3]

      Chen, J.; Hu, C. L.; Mao, F. F.; Yang, B. P.; Zhang, X. H.; Mao, J. G. REI5O14 (RE = Y and Gd): promising SHG materials featuring the semicircle-shaped I5O143- polyiodate anion. Angew. Chem. Int. Ed. 2019, 58, 11666–11669.  doi: 10.1002/anie.201904383

    4. [4]

      Sykora, R. E.; Khalifah, P.; Assefa, Z.; Albrecht-Schmitt, T. E.; Haire, R. G. Magnetism and Raman spectroscopy of the dimeric lanthanide iodates Ln(IO3)3 (Ln = Gd, Er) and magnetism of Yb(IO3)3. J. Solid State Chem. 2008, 181, 1867–1875.  doi: 10.1016/j.jssc.2008.04.019

    5. [5]

      Huang, C.; Hu, C. L.; Xu, X.; Yang, B. P.; Mao, J. G. Explorations of a series of second order nonlinear optical materials based on monovalent metal gold(Ⅲ) iodates. Inorg. Chem. 2013, 52, 11551–11562.  doi: 10.1021/ic401891f

    6. [6]

      Sun, C. F.; Hu, C. L.; Xu, X.; Yang, B. P.; Mao, J. G. Explorations of new second-order nonlinear optical materials in the potassium vanadyl iodate system. J. Am. Chem. Soc. 2011, 133, 5561–5572.  doi: 10.1021/ja200257a

    7. [7]

      Phanon, D.; Mosset, A.; Gautier-Luneau, I. New iodate materials as potential laser matrices. Preparation and characterisation of α-M(IO3)3 (M = Y, Dy) and β-M(IO3)3 (M = Y, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er). Structural evolution as a function of the Ln3+ cationic radius. Solid State Sci. 2007, 9, 496–505.  doi: 10.1016/j.solidstatesciences.2007.04.004

    8. [8]

      Assefa, Z.; Ling, J.; Haire, R. G.; Albrecht-Schmittc, T. E.; Sykora, R. E. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)3 and Ln(IO3)3(H2O) (Ln: Yb, Lu). J. Solid State Chem. 2006, 179, 3653–3663.  doi: 10.1016/j.jssc.2006.07.042

    9. [9]

      Pan, C. Y.; Mai, H. D.; Chen, W. Z.; Zhao, F. H.; Yang, H. M. Synthesis, structure, and properties of a new Er iodate. Aust. J. Chem. 2014, 67, 763–767.  doi: 10.1071/CH13570

    10. [10]

      Sykora, R. E.; Assefa, Z.; Haire, R. G. Synthesis, structure, and spectroscopic properties of Am(IO3)3 and the photoluminescence behavior of Cm(IO3)3. Inorg. Chem. 2005, 44, 5667–5676.  doi: 10.1021/ic050386k

    11. [11]

      Chai, W.; Lin, J.; Song, L.; Shu, K.; Qin, L.; Shi, H.; Guo, J. A two-dimensional topological structure and a series of corresponding plate-like Ln(IO3)3(H2O)·H2O (Ln = Nd, Eu, Gd, Tb, Dy) nanomaterials: syntheses, structures and properties. Solid State Sci. 2010, 12, 2100−2105.  doi: 10.1016/j.solidstatesciences.2010.09.006

    12. [12]

      Regny, S.; Riporto, J.; Mugnier, Y.; Dantec, R. L.; Kodjikian, S.; Pairis, S.; Gautier-Luneau, I.; Dantell, G. Microwave synthesis and up-conversion properties of SHG-active α-(La, Er)(IO3)3 nanocrystals. Inorg. Chem. 2019, 58, 1647−1656.  doi: 10.1021/acs.inorgchem.8b03208

    13. [13]

      Li, C.; Wang, F.; Zhu, J.; Yu, J. C. NaYF4: Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst. Appl. Catal. B 2010, 100, 433−439.  doi: 10.1016/j.apcatb.2010.08.017

    14. [14]

      Qin, W.; Zhang, D.; Zhao, D.; Wang, L.; Zheng, K. Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 2010, 46, 2304−2306.  doi: 10.1039/b924052g

    15. [15]

      Wang, W.; Cheng, H.; Huang, B.; Li, X.; Qin, X.; Zhang, X.; Dai, Y. Ln(IO3)3 (Ln = Ce, Nd, Eu, Gd, Er, Yb) polycrystals as novel photocatalysts for efficient decontamination under ultraviolet light irradiation. Inorg. Chem. 2014, 53, 4989−4993.  doi: 10.1021/ic500027f

    16. [16]

      Perew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      Segall, M.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Krystallogr. 2005, 220, 567–570.

    18. [18]

      Sheldrick, G. M. SHELXS-97: Program for the Solution of Crystal Structures. University of Gottingen, Germany 1997.

    19. [19]

      Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures. University of Gottingen, Germany 1997.

    20. [20]

      Douglas, P.; Hector, A. L.; Levason, W.; Light, M. E.; Matthews, M. L.; Webster, M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: Ⅱ. synthesis and structures of Ln(IO3)3 (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3·2H2O (Ln = Eu, Gd, Dy, Er, Tm, Yb). Z. Anorg. Allg. Chem. 2004, 630, 479−483.  doi: 10.1002/zaac.200300377

    21. [21]

      Kubelka, P.; Munk, F. Z. An article on optics of paint layers. Z. Technol. Phys. 1931, 12, 593−601.

    22. [22]

      Lin, J.; Liu, Q.; Yue, Z.; Diefenbach, K.; Cheng, L.; Lin, Y.; Wang, J. Q. Expansion of the structural diversity of f-element bearing molybdate iodates: synthesis, structures, and optical properties. Dalton Trans. 2019, 48, 4823–4829.  doi: 10.1039/C8DT05120H

    23. [23]

      Dong, H.; Sun, L.; Yan, C. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608−1634.  doi: 10.1039/C4CS00188E

    24. [24]

      Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. Int. Ed. 2017, 56, 11860–11864  doi: 10.1002/anie.201706549

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    3. [3]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    4. [4]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    7. [7]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    11. [11]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    12. [12]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    13. [13]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    14. [14]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    15. [15]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    19. [19]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(1)
  • Abstract views(303)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return