Citation: Jing-Jing CHEN, Yu-Ying ZHENG. [Y(IO3)3(H2O)2]n: a New Rare Earth Iodate Featuring the Circle-shaped I4O12 Polyiodate Anion and Three-order Nonlinear Optical Property[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1307-1313. doi: 10.14102/j.cnki.0254–5861.2011–2580 shu

[Y(IO3)3(H2O)2]n: a New Rare Earth Iodate Featuring the Circle-shaped I4O12 Polyiodate Anion and Three-order Nonlinear Optical Property

  • Corresponding author: Yu-Ying ZHENG, yyzheng@fzu.edu.cn
  • Received Date: 24 August 2019
    Accepted Date: 27 September 2019

Figures(5)

  • A new layered yttrium iodate [Y(IO3)3(H2O)2]n (1) has been prepared from the hydrothermal reaction of Y(NO3)3·6H2O with I2O5 at 170 ℃, and its structure was determined by X-ray single-crystal diffraction method. It belongs to the triclinic system, space group P\begin{document}$ \overline 1 $\end{document} with a = 7.355(5), b = 7.515(5), c = 9.413(7) Å, α = 79.65(2)º, β = 85.18(3)º, γ = 71.870(19)º, Z = 2, V = 486.2(6) Å3. 1 was further characterized by FTIR, powder X-ray diffraction (PXRD) and UV-Vis spectra. In 1, the Y centers in a monocapped trigonal prism environment are bound by IO3- anion and unique circle-shaped I4O12 polyiodate anion to generate a wave-like 2-D layer. The adjacent layers are further linked with each other by hydrogen bonds to form a quasi-3-D supramolecular network. 1 exhibits a reverse saturation absorption and a self-defocusing effect with the nonlinear absorption coefficient β being –0.66 × 10-5 mW-1, which stems mainly from the electron transition from O-2p to I-5p orbital within iodates upon theoretical calculation.
  • 加载中
    1. [1]

      Dunn, M. H.; Ebrahimzadeh, M. Parametric generation of tunable light from continuous-wave to femtosecond pulses. Science 1999, 286, 1513–1517.  doi: 10.1126/science.286.5444.1513

    2. [2]

      Wickleder, M. S. Inorganic lanthanide compounds with complex anions. Chem. Rev. 2002, 102, 2011–2087.  doi: 10.1021/cr010308o

    3. [3]

      Hu, C. L.; Mao, J. G. Recent advances on second-order NLO materials based on metal iodates. Coord. Chem. Rev. 2015, 288, 1–17.  doi: 10.1016/j.ccr.2015.01.005

    4. [4]

      Pan, C. Y.; Mai, H. D.; Chen, W. Z.; Zhao, F. H.; Yang, H. M. The synthesis, structure, and tunable emission spectra of a new phosphor Sm(IO3)3·2H2O. Z. Anorg. Allg. Chem. 2014, 640, 429–433.  doi: 10.1002/zaac.201300432

    5. [5]

      Shehee, T. C.; Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E. Hydrothermal preparation, structures, and NLO properties of the rare earth molybdenyl iodates, RE(MoO2)(IO3)4(OH) (RE = Nd, Sm, Eu). Inorg. Chem. 2003, 42, 457–462.  doi: 10.1021/ic025992j

    6. [6]

      Sykora, R. E.; McDaniel, S. M.; Wells, D. M.; Albrecht-Schmitt, T. E. Mixed-metal uranium(Ⅵ) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO2(CrO4)(IO3)(H2O)], A2[UO2(CrO4)(IO3)2] (A = K, Rb, Cs), and K2[UO2(MoO4)(IO3)2]. Inorg. Chem. 2002, 41, 5126–5132.  doi: 10.1021/ic025773y

    7. [7]

      Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Wells, D. M.; Albrecht-Schmitt, T. E. New one-dimensional vanadyl iodates: hydrothermal preparation, structures, and NLO properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem. Mater. 2002, 14, 2741–2749.  doi: 10.1021/cm020021n

    8. [8]

      Chen, J.; Hu, C. L.; Mao, F. F.; Yang, B. P.; Zhang, X. H.; Mao, J. G. REI5O14 (RE = Y and Gd): promising SHG materials featuring the semicircle-shaped I5O143- polyiodate anion. Angew. Chem. Int. Ed. 2019, 58, 11666–11669.  doi: 10.1002/anie.201904383

    9. [9]

      Xiao, L.; Cao, Z.; Yao, J.; Lin, Z.; Hu, Z. A new cerium iodate infrared nonlinear optical material with a large second-harmonic generation response. J. Mater. Chem. C 2017, 5, 2130–2134.  doi: 10.1039/C6TC05269J

    10. [10]

      Phanon, D.; Mosset, A.; Gautier-Luneau, I. New iodate materials as potential laser matrices. Preparation and characterization of α-M(IO3)3 (M = Y, Dy) and β-M(IO3)3 (M = Y, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er). Structural evolution as a function of the Ln3+ cationic radius. Solid State Sci. 2007, 9, 496–505.  doi: 10.1016/j.solidstatesciences.2007.04.004

    11. [11]

      Assefa, Z.; Ling, J.; Haire, R. G.; Albrecht-Schmittc, T. E.; Sykora, R. E. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)3 and Ln(IO3)3(H2O) (Ln: Yb, Lu). J. Solid State Chem. 2006, 179, 3653–3663.  doi: 10.1016/j.jssc.2006.07.042

    12. [12]

      Pan, C. Y.; Mai, H. D.; Chen, W. Z.; Zhao, F. H.; Yang, H. M. Synthesis, structure, and properties of a new Er iodate. Aust. J. Chem. 2014, 67, 763–767.  doi: 10.1071/CH13570

    13. [13]

      Sykora, R. E.; Assefa, Z.; Haire, R. G. Synthesis, structure, and spectroscopic properties of Am(IO3)3 and the photoluminescence behavior of Cm(IO3)3. Inorg. Chem. 2005, 44, 5667–5676.  doi: 10.1021/ic050386k

    14. [14]

      Lian, Z.; Zhao, N.; Liu, P.; An, C.; Wang, A.; Yang, F. Crystal structures and investigation of the third-order nonlinear optical properties of four coordination polymers by using the Z-scan technique. CrystEngComm. 2018, 20, 5833–5843.  doi: 10.1039/C8CE01283K

    15. [15]

      Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.  doi: 10.1039/B905604C

    16. [16]

      Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374.  doi: 10.1021/cr8003983

    17. [17]

      Materials studio user's manual, version 7.0, Accelrys Inc., San Diego, CA 2016.

    18. [18]

      Perew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phy. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      Segall, M.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Krystallogr. 2005, 220, 567–570.

    20. [20]

      Bruker. APEXII software, Version 6.3.1, Bruker AXS Inc, Madison, Wisconsin, USA 2004.

    21. [21]

      Sheldrick, G. M. SHELXS-97: Program for the Solution of Crystal Structures. University of Gottingen, Germany 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures. University of Gottingen, Germany 1997.

    23. [23]

      Hector, A. L.; Henderson, S. J.; Levason, W.; Webster, M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: structures of Sc(IO3)3, Y(IO3)3·2H2O, La(IO3)3·1/2H2O and Lu(IO3)3·2H2O. Z. Anorg. Allg. Chem. 2002, 628, 198–202.  doi: 10.1002/1521-3749(200201)628:1<198::AID-ZAAC198>3.0.CO;2-L

    24. [24]

      Hector, A. L.; Henderson, S. J.; Levason, W.; Webster, M. Synthesis and properties of scandium, yttrium and lanthanum periodates. Crystal structures of Y(H2O)3{IO4(OH)2} and Y(H2O)2(IO3)3. Inorg. Chim. Acta 2000, 298, 43–49.  doi: 10.1016/S0020-1693(99)00409-0

    25. [25]

      Ok, K. M.; Halasyamani, P. S. New metal iodates: syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYI4O12 and centrosymmetric β-Cs2I4O11 and Rb2I6O15(OH)2·H2O. Inorg. Chem. 2005, 44, 9353–9359.  doi: 10.1021/ic051340u

    26. [26]

      Kubelka, P.; Munk, F. Z. An article on optics of paint layers. Z. Technol. Phys. 1931, 12, 593−601.

    27. [27]

      Lin, J.; Liu, Q.; Yue, Z.; Diefenbach, K.; Cheng, L.; Lin, Y.; Wang, J. Q. Expansion of the structural diversity of f-element bearing molybdate iodates: synthesis, structures, and optical properties. Dalton Trans. 2019, 48, 4823–4829.  doi: 10.1039/C8DT05120H

    28. [28]

      Sykora, R. E.; Deakin, L.; Mar, A.; Skanthakumar, S.; Soderholm, L.; Albrecht-Schmitt, T. E. Isolation of intermediate-valent Ce(Ⅲ)/Ce(Ⅳ) hydrolysis products in the preparation of cerium iodates: electronic and structural aspects of Ce2(IO3)6(OHx) (x ≈ 0 and 0.44). Chem. Mater. 2004, 16, 1343–1349.  doi: 10.1021/cm035147e

    29. [29]

      Liu, R. Q.; Zhao, N.; Yang, F. X.; Wang, A. R.; Liu, P.; An, C. X.; Lian, Z. X. Enhanced third-order nonlinear optical properties of three 2D coordination polymers based on bis(imidazole) ligands and dicarboxylic ligands. Polyhedron 2016, 111, 16–25.  doi: 10.1016/j.poly.2016.03.015

    30. [30]

      Hou, H. W.; Wei, Y. L.; Song, Y. L.; Mi, L. W.; Tang, M. S.; Li, L. K.; Fan, Y. T. Metal ions play different roles in the third-order nonlinear optical properties of d10 metal-organic clusters. Angew. Chem. 2005, 117, 6221–6228.  doi: 10.1002/ange.200463004

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    7. [7]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    8. [8]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    11. [11]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    12. [12]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    13. [13]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    14. [14]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    15. [15]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    16. [16]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    17. [17]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    18. [18]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    19. [19]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(2)
  • Abstract views(323)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return