Citation: Kai ZHAO, Wei JIANG, Chong MENG. Key Parameters Analysis and Regulation of Singlet Oxygen Quenching Rate of Carotenoids[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1226-1234. doi: 10.14102/j.cnki.0254–5861.2011–2568 shu

Key Parameters Analysis and Regulation of Singlet Oxygen Quenching Rate of Carotenoids

  • Corresponding author: Kai ZHAO, zhaokaibeiti@outlook.com
  • Received Date: 7 August 2019
    Accepted Date: 22 November 2019

Figures(2)

  • 28 kinds of carotenoids are studied to reveal the key parameters and regulation on the singlet oxygen quenching rate. First, the quantum chemistry parameters of carotenoids calculated by Gaussian software combined with substitution parameters were used to construct the quantitative structure-activity relationship model (QSAR) of the singlet oxygen quenching rate of carotenoids. The key parameters affecting the antioxidant activity of carotenoids are revealed, and the data predicted via the QSAR model were provided for subsequent research. Then, a three-dimensional (3D) pharmacophore model was used to regulate and modify the antioxidant activity of carotenoids. The correlation coefficients of the modeling group (R2) and verification group (Rpre2) of the established QSAR model were 0.945 and 0.916, respectively, which can be used for the analysis of antioxidant activity of carotenoids; the antioxidant activity of carotenoids can be significantly regulated by the number of conjugated C=C bonds, the energy difference between frontier molecular orbitals and the partial Mulliken charge in C1 and the ππ* excitation energy E(s); the antioxidant activity of carotenoids can be effectively regulated by the hydrogen bond acceptor pharmacophores on both sides of the conjugated C=C bonds and the hydrophobic groups on the conjugated C=C bond; the hydrophobic substituents attached to conjugated C=C bonds can effectively improve the singlet oxygen quenching rate of carotenoids.
  • 加载中
    1. [1]

      Yungyuen, W.; Ma, G.; Zhang, L. C.; Yamawaki, K.; Takagi, T.; Kiriiwa, Y.; Ikoma, Y.; Matsumoto, H.; Yoshioka, T.; Nesumi, H. Regulation of carotenoid metabolism in response to different temperatures in citrus juice sacs in vitro. Sci. Hortic. 2017, 238, 384–390.

    2. [2]

      Asker, D. High throughput screening and profiling of high-value carotenoids from a wide diversity of bacteria in surface seawater. Food Chem. 2018, 261, 103–111.  doi: 10.1016/j.foodchem.2018.03.109

    3. [3]

      Benmeziane, A.; Boulekbache-Makhlouf, L.; Mapelli-Brahm, P.; Khodja, N. K.; Remini, H.; Madani, K.; Meléndez-Martínez, A. J. Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Res. Int. 2018, 111, 391–398.  doi: 10.1016/j.foodres.2018.05.044

    4. [4]

      Zeng, Y. C.; Mu, G. P.; Huang, S. F.; Zeng, X. H.; Cheng, H.; Li, Z. X. Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose. Nutr. Res. Pract. 2014, 8, 368–376.  doi: 10.4162/nrp.2014.8.4.368

    5. [5]

      Rao, A. V.; Rao, L. G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216.  doi: 10.1016/j.phrs.2007.01.012

    6. [6]

      Kamath, B. S.; Srikanta, B. M.; Dharmesh, S. M.; Sarada, R.; Ravishankar, G. A. Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur. J. Pharmacol. 2008, 590, 387–395.  doi: 10.1016/j.ejphar.2008.06.042

    7. [7]

      Islam, S. N.; Nusrat, T.; Begum, P.; Ahsan, M. Carotenoids and β-carotene in orange fleshed sweet potato: a possible solution to vitamin A deficiency. Food Chem. 2016, 199, 628–631.  doi: 10.1016/j.foodchem.2015.12.057

    8. [8]

      De Lucca, L.; Rodrigues, F.; Jantsch, L. B.; Kober, H.; Neme, W. S.; Gallarreta, F. M. P.; Gonçalves, T. L. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia. Biomed. Pharmacother. 2016, 84, 224–229.  doi: 10.1016/j.biopha.2016.09.033

    9. [9]

      Yang, Z. H.; Luo, S.; Wei, Z. S.; Ye, T.; Spinney, R.; Chen, D.; Xiao, R. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: a single-descriptor based QSAR and DFT study. Environ. Pollut. 2016, 211, 157–164.  doi: 10.1016/j.envpol.2015.12.044

    10. [10]

      Amir, M.; Khan, A.; Mujeeb, M. Phytochemical analysis and in vitro antioxidant activity of zingiber officinale. Free Radical. Antioxi. 2011, 1, 75–81.  doi: 10.5530/ax.2011.4.12

    11. [11]

      Foote, D. S.; Denny, R. W. Chemistry of singlet oxygen. Ⅶ. Quenching by. beta. -carotene. J. Am. Chem. Soc. 1968, 90, 6233–6235.  doi: 10.1021/ja01024a061

    12. [12]

      Baltschun, D.; Beutner, S.; Briviba, K.; Martin, H. D.; Paust, J.; Peters, M.; Röver, S.; Sies, H.; Stahl, W.; Steigel, A.; Stenhorst, F. Singlet oxygen quenching abilities of carotenoids. Eur. J. Org. Chem. 1997, 9, 1887–1893.

    13. [13]

      Heymann, T.; Heinz, P.; Glomb, M. A. Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals. J. Agr. Food Chem. 2015, 63, 3279–3287  doi: 10.1021/acs.jafc.5b00377

    14. [14]

      Fukuzawa, K.; Inokami, Y.; Tokumura, A.; Terao, J.; Suzuki, A. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes. Lipids. 1998, 33, 751–756.  doi: 10.1007/s11745-998-0266-y

    15. [15]

      Singh, A. K. Development of quantitative structure-activity relationship (QSAR) models for predicting risk of exposure from carcinogens in animals. Cancer Invest. 2001, 19, 611–620.  doi: 10.1081/CNV-100104289

    16. [16]

      Chen, K. X.; Shen, Q. Q.; Shen, S. Y.; Zhou, X. T.; Li, Z. G.; Chen, Z. X. In-silico prediction of the sweetness of aspartame analogues from QSPR analysis. Chin. J. Struct. Chem. 2018, 37, 1689–1702.

    17. [17]

      Jin, H.; Hua, S. G.; Feng, M. B.; Chen, L. QSAR modeling of toxicity of quaternary ammonium compounds to Chlorella pyrenoidosa using 2D and 3D descriptors. Chin. J. Struct. Chem. 2015, 34, 1793–1802.

    18. [18]

      Sun, Y. J.; Wu, D.; Liu, D. H. Quantitative structure-activity relationship studies on the antioxidant activity and gap junctional communication of carotenoids. Chin. J. Struct. Chem. 2010, 29, 1362–1372.

    19. [19]

      Soffers, A. E.; Marjon, J. H.; Haandel, V. Antioxidant activities of carotenoids: quantitative relationships between theoretical calculations and experimental literature data. Free Radical Res. 1990, 30, 233–240.

    20. [20]

      Sun, Y. J.; Pang, J.; Ye, X. Q.; Lv, Y.; Li, J. Quantitative structure-activity relationship study on the antioxidant activity of carotenoids. Chin. J. Struct. Chem. 2009, 28, 163–170.

    21. [21]

      Woodall, A. A.; Ming Lee, S. W.; Weesie, R. J.; Jackson, M. J. Oxidation of carotenoids by free radicals: relationship between structure and reactivity. BBA-Gen. Subjects 1997, 1336, 33–42.  doi: 10.1016/S0304-4165(97)00006-8

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian Inc., Pittsburgh PA 2009, Gaussian 09, Revision A. 02.

    23. [23]

      Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.  doi: 10.1103/PhysRev.136.B864

    24. [24]

      Zhu, H.; Wang, M. C. A semi-stationary copula model approach for bivariate survival data with interval sampling. Int. J. Biostat. 2015, 11, 151–173.

    25. [25]

      Jiang, L.; Li, Y. How do the substituents affect and regulate the relative retention times of polychlorinated biphenyls during gas chromatography? J. Chemometr. 2015, 29, 606–614.  doi: 10.1002/cem.2744

    26. [26]

      Tropsha, A.; Gramatica, P.; Gombar, V. K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Qsar Comb. Sci. 2003, 22, 69–77.  doi: 10.1002/qsar.200390007

    27. [27]

      Ojha, P. K.; Mitra, I.; Das, R. N.; Roy, K. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst. 2011, 107, 194–205.  doi: 10.1016/j.chemolab.2011.03.011

    28. [28]

      Arkan, E.; Shahlaei, M.; Pourhossein, A.; Fakhri, K.; Fassihi, A. Validated QSAR analysis of some diaryl substituted pyrazoles as CCR2 inhibitors by various linear and nonlinear multivariate chemometrics methods. Eur. J. Med. Chem. 2010, 45, 394–406.

    29. [29]

      Huang, H. J.; Lee, C. C.; Chen, C. Y. C. Pharmacological chaperone design for reducing risk factor of Parkinson's disease from traditional Chinese medicine. E. Evid. Based Complement Alternat Med. 2014, 2014, 830490–830490.

    30. [30]

      Conn, P. F.; Schalch, W.; Truscott, T. G. The singlet oxygen and carotenoid interaction. J. Photoch. Photobio. B 1991, 11, 41–47.  doi: 10.1016/1011-1344(91)80266-K

    31. [31]

      Devasagayam, T. P. A.; Sundquist, A. R.; Di Mascio, P.; Kaiser S.; Sies H. Activity of thiols as singlet molecular oxygen quenchers. J. Photochem. Photobiol. B 1991, 9, 105–116.  doi: 10.1016/1011-1344(91)80008-6

    32. [32]

      Truscott, T. G. The photophysics and photochemistry of the carotenoids. J. Photochem. Photobiol. B: Biol. 1990, 6, 359–371.  doi: 10.1016/1011-1344(90)85110-I

    33. [33]

      Krisky, N. I. Carotenoid protection against oxidation. Pure Allp. Chem. 1979, 51, 649–660.  doi: 10.1351/pac197951030649

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    3. [3]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    6. [6]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    11. [11]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    12. [12]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    15. [15]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    16. [16]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    17. [17]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

Metrics
  • PDF Downloads(1)
  • Abstract views(306)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return