Citation: You-Hong GUO, Dong-Sheng ZHAO, Yan-Fang SHI, Ling-Ling ZHANG, Rong-Min YU. Synthesis, Structure and Photoluminescence of a Cu2I2 Complex with an Acridine-modified Diimine Ligand[J]. Chinese Journal of Structural Chemistry, ;2020, 39(7): 1288-1294. doi: 10.14102/j.cnki.0254–5861.2011–2552 shu

Synthesis, Structure and Photoluminescence of a Cu2I2 Complex with an Acridine-modified Diimine Ligand

  • Corresponding author: You-Hong GUO, guo-youhong@163.com
  • Received Date: 29 July 2019
    Accepted Date: 17 January 2020

    Fund Project: the NSF 21671190

Figures(4)

  • A dinuclear cuprous complex [(mapypz)Cu(μ-I)2Cu(mapypz)] (1, mapypz = 9,9-dimethyl-10-(6-(3-phenyl-1H-pyrazol-1-yl)-pyridin-3-yl)-9,10-dihydroacridine) was synthesized from the reaction of equivalent CuI and mapypz at room temperature. The compound crystallizes in monoclinic space group P21/c with a = 13.8300(4), b = 9.5365(2), c = 19.0833(5) Å, β = 103.017(3)º, V = 2452.23(11) Å3, Z = 2, Mr = 1237.92, Dc = 1.677 g/cm3, F(000) = 1232, μ = 11.334 mm–1, GOOF = 1.001, the final R = 0.0330, and wR = 0.0741 for 4627 observed reflections with I > 2σ(I). The Cu(Ⅰ) atoms in the complex are four-coordinated with a distorted tetrahedral coordination geometry. The copper centers in the molecular structure are bridged by two iodide anions and each Cu(Ⅰ) is chelated further terminally by a diimine ligand. The [Cu(μ-I)2Cu] core is planar. In the solid state, the complex exhibits orange photoluminescence with emission peak λmax = 568 nm, lifetime τ = 16 μs and quantum yield ф = 0.22 at room temperature. The studies of varied temperature emission spectra and decay behaviours of the complex indicate that it displays thermally activated delayed fluorescence at room temperature. The results of experimental and DFT calculations suggest that the emission in the solid state originates from the 1,3MLCT excited states.
  • 加载中
    1. [1]

      Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Abdi Jalebi, M.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. High-performance light-emitting diodes based on carbene-metal-amides. Science 2017, 356, 159–163.  doi: 10.1126/science.aah4345

    2. [2]

      Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime. Science 2019, 363, 601–606.  doi: 10.1126/science.aav2865

    3. [3]

      Shi, S.; Jung, M. C.; Coburn, C.; Tadle, A.; Sylvinson M. R. D.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Highly efficient photo- and electroluminescence from two-coordinate Cu(Ⅰ) complexes featuring nonconventional N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 3576–3588.  doi: 10.1021/jacs.8b12397

    4. [4]

      Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in aolution-processed OLEDs. Chem. Mater. 2013, 25, 3910–3920.  doi: 10.1021/cm4024309

    5. [5]

      Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.; Adachi, C. Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(Ⅰ) complexes. Adv. Funct. Mater. 2012, 22, 2327–2336.  doi: 10.1002/adfm.201101907

    6. [6]

      Laviecambot, A.; Cantuel, M.; Leydet, Y.; Jonusauskas, G.; Bassani, D.; McClenaghan, N. Improving the photophysical properties of copper(Ⅰ) bis(phenanthroline) complexes. Coordin. Chem. Rev. 2008, 252, 2572–2584.  doi: 10.1016/j.ccr.2008.03.013

    7. [7]

      Cuttell, D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple Cu(Ⅰ) complexes with unprecedented excited-state lifetime. J. Am. Chem. Soc. 2002, 124, 6–7.  doi: 10.1021/ja012247h

    8. [8]

      Zhang, Q. S.; Zhou, Q. G.; Cheng, Y. X.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. Highly efficient green phosphorescent organic light-emitting diodes based on Cu-Ⅰ complexes. Adv. Mater. 2004, 16, 432–436.  doi: 10.1002/adma.200306414

    9. [9]

      Chou, P. T.; Chi, Y.; Chung, M. W.; Lin, C. C. Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coordin. Chem. Rev. 2011, 255, 2653–2665.  doi: 10.1016/j.ccr.2010.12.013

    10. [10]

      Tsuboyama, A.; Kuge, K.; Furugori, M.; Okada, S.; Hoshino, M.; Ueno, K. Photophysical properties of highly luminescent copper(Ⅰ) halide complexes chelated with 1,2-bis(diphenylphosphino)benzene. Inorg. Chem. 2007, 46, 1992–2001.  doi: 10.1021/ic0608086

    11. [11]

      Zink, D. M.; Baumann, T.; Friedrichs, J.; Nieger, M.; Brase, S. Copper(Ⅰ) complexes based on five-membered P^N heterocycles: structural diversity linked to exciting luminescence properties. Inor. Chem. 2013, 52, 13509–20.  doi: 10.1021/ic4019162

    12. [12]

      Zink, D. M.; Bachle, M.; Baumann, T.; Nieger, M.; Kuhn, M.; Wang, C.; Klopper, W.; Monkowius, U.; Hofbeck, T.; Yersin, H.; Brase, S. Synthesis, structure, and characterization of dinuclear copper(Ⅰ) halide complexes with P^N ligands featuring exciting photoluminescence properties. Inorg. Chem. 2013, 52, 2292–305.  doi: 10.1021/ic300979c

    13. [13]

      Volz, D.; Wallesch, M.; Grage, S. L.; Gottlicher, J.; Steininger, R.; Batchelor, D.; Vitova, T.; Ulrich, A. S.; Heske, C.; Weinhardt, L.; Baumann, T.; Brase, S. Labile or stable: can homoleptic and heteroleptic PyrPHOS-copper complexes be processed from solution? Inorg. Chem. 2014, 53, 7837–47.  doi: 10.1021/ic500135m

    14. [14]

      Kang, L.; Chen, J.; Teng, T.; Chen, X. L.; Yu, R.; Lu, C. Z. Experimental and theoretical studies of highly emissive dinuclear Cu(Ⅰ) halide complexes with delayed fluorescence. Dalton Trans. 2015, 44, 11649–59.  doi: 10.1039/C5DT01292A

    15. [15]

      Zink, D. M.; Volz, D.; Baumann, T.; Mydlak, M.; Flügge, H.; Friedrichs, J.; Nieger, M.; Bräse, S. Heteroleptic, dinuclear copper(Ⅰ) complexes for application in organic light-emitting diodes. Chem. Mater. 2013, 25, 4471–4486.  doi: 10.1021/cm4018375

    16. [16]

      Liu, Z.; Qiu, J.; Wei, F.; Wang, J.; Liu, X.; Helander, M. G.; Rodney, S.; Wang, Z.; Bian, Z.; Lu, Z.; Thompson, M. E.; Huang, C. Simple and high efficiency phosphorescence organic light-emitting diodes with codeposited copper(Ⅰ) emitter. Chem. Mater. 2014, 26, 2368–2373.  doi: 10.1021/cm5006086

    17. [17]

      Liang, D.; Jia, J. H.; Liao, J. Z.; Yu, R.; Lu, C. Z. Synthesis, crystal structure and photoluminescence of a TADF cuprous complex. Chin. J. Struct. Chem. Comm. 2017, 36, 82–88.

    18. [18]

      Liang, D.; Chen, X. L.; Liao, J. Z.; Hu, J. Y.; Jia, J. H.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence for solution-processed organic light-emitting devices. Inorg. Chem. 2016, 55, 7467–7475.  doi: 10.1021/acs.inorgchem.6b00763

    19. [19]

      Sheldrick, G. M. SHELXL-97, Program for Solution of Crystal Structures. Institute for Inorganic Chemistry, University of Göttingen: Göttingen. Germany 1997.

    20. [20]

      Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.  doi: 10.1103/PhysRevB.37.785

    21. [21]

      Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.  doi: 10.1063/1.464913

    22. [22]

      Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464.  doi: 10.1016/0009-2614(96)00440-X

    23. [23]

      Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449.  doi: 10.1063/1.475855

    24. [24]

      Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218–8224.  doi: 10.1063/1.477483

    25. [25]

      Roy, L. E.; Hay, P. J.; Martin, R. L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput. 2008, 4, 1029–1031.  doi: 10.1021/ct8000409

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D. 01 2009.

    27. [27]

      Czerwieniec, R.; Yu, J.; Yersin, H. Blue-light emission of Cu(Ⅰ) complexes and singlet harvesting. Inorg. Chem. 2011, 50, 8293–8301.  doi: 10.1021/ic200811a

    28. [28]

      Linfoot, C. L.; Leitl, M. J.; Richardson, P.; Rausch, A. F.; Chepelin, O.; White, F. J.; Yersin, H.; Robertson, N. Thermally activated delayed fluorescence (TADF) and enhancing photoluminescence quantum yields of [Cu(Ⅰ)(diimine)(diphosphine)](+) complexes-photophysical, structural, and computational studies. Inorg. Chem. 2014, 53, 10854–61.  doi: 10.1021/ic500889s

    29. [29]

      Hofbeck, T.; Monkowius, U.; Yersin, H. Highly efficient luminescence of Cu(Ⅰ) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 2015, 137, 399–404.  doi: 10.1021/ja5109672

    30. [30]

      Osawa, M.; Hoshino, M.; Hashimoto, M.; Kawata, I.; Igawa, S.; Yashima, M. Application of three-coordinate copper(Ⅰ) complexes with halide ligands in organic light-emitting diodes that exhibit delayed fluorescence. Dalton Trans 2015, 44, 8369–78.  doi: 10.1039/C4DT02853H

    31. [31]

      Osawa, M.; Kawata, I.; Ishii, R.; Igawa, S.; Hashimoto, M.; Hoshino, M. Application of neutral d10 coinage metal complexes with an anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 4375.  doi: 10.1039/c3tc30524d

    32. [32]

      Zhang, Q.; Kuwabara, H.; Potscavage, W. J. Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070–81.  doi: 10.1021/ja510144h

    33. [33]

      Xu, S.; Liu, T.; Mu, Y.; Wang, Y. F.; Chi, Z.; Lo, C. C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence. Angew Chem. Int. Ed. Engl. 2015, 54, 874–8.  doi: 10.1002/anie.201409767

    34. [34]

      Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 2014, 5, 4016.  doi: 10.1038/ncomms5016

    35. [35]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–8.  doi: 10.1038/nature11687

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    7. [7]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    19. [19]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    20. [20]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

Metrics
  • PDF Downloads(5)
  • Abstract views(356)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return