Citation: Chen-Fei SHEN, Zi-Zhong LIU, Hong-Xia LIU, Li-Nan HAN. Structures, Aromaticity and Raman Spectroscopy of Double Hanging Ring Molecules [(GnHn–1m)(GnHn–1m)] (G = C, Si, Ge; n = 3, 5, 6, 7, 8; m = +1, –1, 0, +1, +2)[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 214-228. doi: 10.14102/j.cnki.0254–5861.2011–2416 shu

Structures, Aromaticity and Raman Spectroscopy of Double Hanging Ring Molecules [(GnHn–1m)(GnHn–1m)] (G = C, Si, Ge; n = 3, 5, 6, 7, 8; m = +1, –1, 0, +1, +2)

  • Corresponding author: Zi-Zhong LIU, liuzz@imnu.edu.cn
  • Received Date: 18 April 2019
    Accepted Date: 12 September 2019

    Fund Project: the National Natural Science Foundation of China 21563023the Graduate Education Innovation Program funded Projects of Inner Mongolia S20161013506inner Mongolia Normal University Graduate Students' Research & Innovation Fund CXJJS16090

Figures(11)

  • Theoretical calculations of Double Hanging Ring Molecule (DHRM) [(GnHn–1m)(GnHn–1m)] (G = C, Si, Ge; n = 3, 5, 6, 7, 8; m = +1, –1, 0, +1, +2) were performed via Gaussian 09 with the method of Density Functional Theory (DFT). Geometrical optimization, Potential Energy surface Scan (PES), Degree of Aromaticity (DOA) and Nucleus Independent Chemical Shift (NICS) were computed to study the optimal structures and aromaticity of DHRMs. Ring Stretching Vibration Raman Spectroscopy (RSVRSF) was predicted to seek the relation between RSVRSF and aromaticity of DHRMs. The results show optimal structures of DHRMs[(GnHn–1m)(GnHn–1m)] (n = 3, 5~8); DA = 90° is the stable structure when n = 3, 7, 8; while n = 5 corresponds to DA = 30°, n = 6 corresponds to DA = 50°; the correlation between DOA and NICS of DHRMs is quadratic; the value of RSVRSF of DHRM approximates to its corresponding single ring molecule, which could act as characteristic frequency of ring molecule to identify its aromaticity; the correlation between RSVRSF and DOA is quadratic, and that between RSVRSF and NICS is linear.
  • 加载中
    1. [1]

      Kruszewski, J.; Krygowski, T. M. Definition of aromaticity basing on the harmonic oscillator model. Tetra. Lett. 1972, 13, 3839−3842.  doi: 10.1016/S0040-4039(01)94175-9

    2. [2]

      Mandal, D.; Maity, R.; Beg, H.; Salgado-M, G.; Misra, A. Computation of global reactivity descriptors and first hyper polarisability as a function of torsional angle of donor-acceptor substituted biphenyl ring system. Mol. Phys. 2017, 116, 1−11.

    3. [3]

      Wei, X. Y.; Zhao, B. X.; Shang, Y. Z.; Cheng, Y. Z. Rigid biphenyl-contained epoxy resins with improved thermal resistant properties. Chin. J. Poly. Sci. 2017, 35, 1428−1435.  doi: 10.1007/s10118-017-1975-9

    4. [4]

      Boffetta, P.; Catalani, S.; Tomasi, C.; Pira, E.; Apostoli, P. Occupational exposure to polychlorinated biphenyls and risk of cutaneous melanoma. Eur. J. Cancer Prev. 2018, 27, 62−69.  doi: 10.1097/CEJ.0000000000000316

    5. [5]

      Tanabe, Y.; Mizuhata, Y.; Tokitoh, N. Synthesis and structure of a heavier congener of biphenyl, 1, 1΄-disila-4, 4΄-biphenyl. Organometallics 2010, 29, 721−723.  doi: 10.1021/om901095w

    6. [6]

      Guo, Y. B.; Liu, Z. Z.; Liu, H. X.; Zhang, F. Y.; Yin, J. Q. A new aromatic probe — the ring stretching vibration Raman spectroscopy frequency. Spectrochim. Acta A 2016, 164, 84−88.  doi: 10.1016/j.saa.2016.03.005

    7. [7]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92/DFT

    8. [8]

      Shen, C. F.; Liu, Z. Z.; Liu, H. X.; Zhang, H. Q. Bond length equalization with molecular aromaticity-a new measurement of aromaticity. Spectrochim. Acta A 2018, 201.

    9. [9]

      Cyranski, M. K. Energetic aspects of cyclic pi-electron delocalization, evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 2005, 5, 3773−3811.

    10. [10]

      Aihara, J. Effect of bond-length alternation on the aromaticity of benzene. Bull. Chem. Soc. Jpn. 1990, 63, 1956−1960.  doi: 10.1246/bcsj.63.1956

    11. [11]

      Aihara, J. Bond-length equalization and aromaticity in charged π-systems. Bull. Chem. Soc. Jpn. 2004, 77, 2179−2183.  doi: 10.1246/bcsj.77.2179

    12. [12]

      Solomon, P. M.; Norton, D. L. The biphenyl molecule as a model transistor. ACS Nano. 2008, 2, 435−440.  doi: 10.1021/nn700253p

    13. [13]

      Jiao, H.; Schleyer, P. V. R.; Mo, Y.; McAllister, M. A.; Tidwell, T. T. Magnetic evidence for the aromaticity and antiaromaticity of charged fluorenyl, indenyl, and cyclopentadienyl systems. J. Am. Chem. Soc. 1997, 119, 7075−7083.  doi: 10.1021/ja970380x

    14. [14]

      Mercero, J. M.; Ugalde, J. M. Sandwich-like complexes based on "all-metal" (Al 4 2-) aromatic compounds. J. Am. Chem. Soc. 2004, 126, 3380−3381.  doi: 10.1021/ja039074b

    15. [15]

      Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. Theoretical study on structures and aromaticities of P5-anion, [Ti(η5-P5)]- and sandwich complex [Ti(η5-P5)2]2. J. Phys. Chem. A 2005, 109, 5645−5655.  doi: 10.1021/jp044395a

    16. [16]

      Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. The electronic structures and aromaticities for zinc sandwich, half-sandwich and zinc-zinc (Zn22+) sandwich complexes within density functional theory. J. Mol. Struc. Theochem. 2006, 758, 127−138.  doi: 10.1016/j.theochem.2005.10.025

    17. [17]

      Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. A theoretical study on structures, bonding energies and aromaticity of two new series of dinuclear phosphametallocenes, (η5-P5) MM΄(η5-P5) and (η5-C5H5) MM΄(η5-P5) (M, M΄ = Zn, Cd). Eur. J. Inorg. Chem. 2006, 14, 2808−2818.

    18. [18]

      Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. Theoretical study on structures and aromaticities of a new series of sandwich complexes, [M2(η5P5)2] and [M(η5P5)2] (M = Be, Mg, and Ca). J. Mol. Struct. Theochem. 2007, 809, 171−179.  doi: 10.1016/j.theochem.2007.01.020

    19. [19]

      Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. V. E. Nucleus-independent chemical shifts, a simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317−6318.  doi: 10.1021/ja960582d

  • 加载中
    1. [1]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    2. [2]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    3. [3]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    4. [4]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    5. [5]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    6. [6]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    7. [7]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    8. [8]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    9. [9]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    10. [10]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    11. [11]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    12. [12]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    13. [13]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    14. [14]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    15. [15]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    16. [16]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    17. [17]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    18. [18]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    19. [19]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    20. [20]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

Metrics
  • PDF Downloads(1)
  • Abstract views(475)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return