二噻吩基乙烯荧光分子开关的研究进展

李冲 刘俊霞 谢诺华 严慧 朱明强

引用本文: 李冲, 刘俊霞, 谢诺华, 严慧, 朱明强. 二噻吩基乙烯荧光分子开关的研究进展[J]. 高分子通报, 2015, 0(9): 142-162. doi: 10.14028/j.cnki.1003-3726.2015.09.010 shu
Citation:  LI Chong, LIU Jun-xia, XIE Nuo-hua, YAN Hui, ZHU Ming-qiang. Research Progress on Photoswitchable Fluorescent Dithienylethenes[J]. Polymer bulletin, 2015, 0(9): 142-162. doi: 10.14028/j.cnki.1003-3726.2015.09.010 shu

二噻吩基乙烯荧光分子开关的研究进展

    通讯作者: 朱明强(1972-),男,博士,1993年毕业于武汉大学化学系,获理学学士学位;1996年毕业于武汉大学化学系高分子化学与物理专业,获理学硕士学位;2001年毕业于北京大学化学与分子工程学院高分子科学与工程系,获理学博士学位。2002年至2007年先后在美国华盛顿州立大学化学系和莱斯大学生物工程系从事博士后研究。2007至2009年任湖南大学生物医学工程中心教授,博导;2009年至今任华中科技大学武汉光电国家实验室教授,博导。主要从事基于有机光电子学的面向生物医学、信息和能源等重大需求的交叉学科及应用研究。E-mail:mqzhu@hust.edu.cn.
  • 基金项目:

    国家自然科学基金(21174045,21474034) (21174045,21474034)

    国家重点基础研究发展计划(2015CB755602,2013CB922104) (2015CB755602,2013CB922104)

摘要: 二噻吩基乙烯类荧光分子开关作为最为经典的二芳基乙烯结构之一,因具有优良的抗疲劳性和双稳态特征而被广泛地研究与应用。本文综述了二噻吩基乙烯荧光分子开关及其聚合物的发展历程,归纳了其荧光开关的机理,介绍了二噻吩基乙烯荧光分子开关及其聚合物近几年在结构与性能的研究基础上取得的重要进展,并重点对它们在可擦写光信息存储、无损读出、单分子荧光成像、生物光学成像、全光晶体管以及超分辨成像等领域的应用进行了系统地概述。文章最后总结了当前二噻吩基乙烯研究中遇到的一些问题,提出了二噻吩基乙烯荧光开关及其聚合物的未来研究方向,同时也对二噻吩基乙烯应用于超分辨成像的前景作出了展望。

English

  • 
    1. [1] Irie M, Mohri M. J Org Chem, 1988, 53 (4): 803~808.[1] Irie M, Mohri M. J Org Chem, 1988, 53 (4): 803~808.

    2. [2] Irie M. Photoch Photobio Sci, 2010, 9 (12): 1535~1542.[2] Irie M. Photoch Photobio Sci, 2010, 9 (12): 1535~1542.

    3. [3] Wigglesworth T J, Sud D, Norsten T B, Lekhi V S, Branda N R. J Am Chem Soc, 2005, 127 (20): 7272~7273.[3] Wigglesworth T J, Sud D, Norsten T B, Lekhi V S, Branda N R. J Am Chem Soc, 2005, 127 (20): 7272~7273.

    4. [4] Enders D, Wang C, Mukanova M, Greb A. Chem CommunChem Commun, 2010, 46 (14): 2447~2449.[4] Enders D, Wang C, Mukanova M, Greb A. Chem CommunChem Commun, 2010, 46 (14): 2447~2449.

    5. [5] Toriumi A, Kawata S, Gu M. Opt Lett, 1998, 23 (24): 1924~1926.[5] Toriumi A, Kawata S, Gu M. Opt Lett, 1998, 23 (24): 1924~1926.

    6. [6] Uchida K, Saito M, Murakami A, Nakamura S, Irie M. Adv Mater, 2003, 15 (2): 121~125.[6] Uchida K, Saito M, Murakami A, Nakamura S, Irie M. Adv Mater, 2003, 15 (2): 121~125.

    7. [7] Stellacci F, Bertarelli C, Toscano F, Gallazzi M C, Zerbi G. Chem Phys Lett, 1999, 302 (5/6): 563~570.[7] Stellacci F, Bertarelli C, Toscano F, Gallazzi M C, Zerbi G. Chem Phys Lett, 1999, 302 (5/6): 563~570.

    8. [8] Matsuda K. Pure Appl Chem, 2008, 80 (3): 555~561.[8] Matsuda K. Pure Appl Chem, 2008, 80 (3): 555~561.

    9. [9] Barone V, Cacelli I, Ferretti A, Visciarelli M. J Phys Chem B, 2014, 118 (18): 4976~4981.[9] Barone V, Cacelli I, Ferretti A, Visciarelli M. J Phys Chem B, 2014, 118 (18): 4976~4981.

    10. [10] Kawai T, Koshido T, Yoshino K. Appl Phys Lett, 1995, 67 (6): 795~797.[10] Kawai T, Koshido T, Yoshino K. Appl Phys Lett, 1995, 67 (6): 795~797.

    11. [11] Irie M, Ishida H, Tsujioka T. Jpn J Appl Phys, 1999, 38 (10R): 6114.[11] Irie M, Ishida H, Tsujioka T. Jpn J Appl Phys, 1999, 38 (10R): 6114.

    12. [12] Takeshita M, Irie M. Chem Lett, 1998, 27 (11): 1123~1124.[12] Takeshita M, Irie M. Chem Lett, 1998, 27 (11): 1123~1124.

    13. [13] Tsivgoulis G M, Lehn J M. Angew Chem Int Edit, 1995, 34 (10): 1119~1122.[13] Tsivgoulis G M, Lehn J M. Angew Chem Int Edit, 1995, 34 (10): 1119~1122.

    14. [14] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420 (6917): 759~760.[14] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420 (6917): 759~760.

    15. [15] Li C, Gong W L, Hu Z, Aldred M P, Zhang G F, Chen T, Huang Z L, Zhu M Q. RSC Adv, 2013, 3 (23): 8967~8972.[15] Li C, Gong W L, Hu Z, Aldred M P, Zhang G F, Chen T, Huang Z L, Zhu M Q. RSC Adv, 2013, 3 (23): 8967~8972.

    16. [16] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (13): 4984~4990.[16] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (13): 4984~4990.

    17. [17] Tian H, Yang S. Chem Soc Rev, 2004, 33 (2): 85~97.[17] Tian H, Yang S. Chem Soc Rev, 2004, 33 (2): 85~97.

    18. [18] Yun C, You J, Kim J, Huh J, Kim E. J Photoch Photobio C, 2009, 10 (3): 111~129.[18] Yun C, You J, Kim J, Huh J, Kim E. J Photoch Photobio C, 2009, 10 (3): 111~129.

    19. [19] Ern J, Bens A T, Martin H D, Mukamel S, Tretiak S, Tsyganenko K, Kuldova K, Trommsdorff H P, Kryschi C. J Phys Chem A, 2001, 105 (10): 1741~1749.[19] Ern J, Bens A T, Martin H D, Mukamel S, Tretiak S, Tsyganenko K, Kuldova K, Trommsdorff H P, Kryschi C. J Phys Chem A, 2001, 105 (10): 1741~1749.

    20. [20] Yagi K, Soong C F, Irie M. J Org Chem, 2001, 66 (16): 5419~5423.[20] Yagi K, Soong C F, Irie M. J Org Chem, 2001, 66 (16): 5419~5423.

    21. [21] Norsten T B, Branda N R. J Am Chem Soc, 2001, 123 (8): 1784~1785.[21] Norsten T B, Branda N R. J Am Chem Soc, 2001, 123 (8): 1784~1785.

    22. [22] Fernández-Acebes A, Lehn J M. Chem-Eur J, 1999, 5 (11): 3285~3292.[22] Fernández-Acebes A, Lehn J M. Chem-Eur J, 1999, 5 (11): 3285~3292.

    23. [23] Giordano L, Macareno J, Song L, Jovin T, Irie M, Jares-Erijman E. Molecules, 2000, 5 (3): 591~593.[23] Giordano L, Macareno J, Song L, Jovin T, Irie M, Jares-Erijman E. Molecules, 2000, 5 (3): 591~593.

    24. [24] Fernández-Acebes A, Lehn J M. Adv Mater, 1998, 10 (18): 1519~1522.[24] Fernández-Acebes A, Lehn J M. Adv Mater, 1998, 10 (18): 1519~1522.

    25. [25] Odo Y, Fukaminato T, Irie M. Chem Lett, 2007, 36 (2): 240~241.[25] Odo Y, Fukaminato T, Irie M. Chem Lett, 2007, 36 (2): 240~241.

    26. [26] Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Angew Chem Int Edit, 2008, 47 (35): 6616~6619.[26] Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Angew Chem Int Edit, 2008, 47 (35): 6616~6619.

    27. [27] Fukaminato T, Tanaka M, Doi T, Tamaoki N, Katayama T, Mallick A, Ishibashi Y, Miyasaka H, Irie M. Photoch Photobio Sci, 2010, 9 (2): 181~187.[27] Fukaminato T, Tanaka M, Doi T, Tamaoki N, Katayama T, Mallick A, Ishibashi Y, Miyasaka H, Irie M. Photoch Photobio Sci, 2010, 9 (2): 181~187.

    28. [28] Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Würthner F. Chem-Eur J, 2012, 18 (43): 13651~13664.[28] Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Würthner F. Chem-Eur J, 2012, 18 (43): 13651~13664.

    29. [29] Berberich M, Wurthner F. Chem Sci, 2012, 3 (9): 2771~2777.[29] Berberich M, Wurthner F. Chem Sci, 2012, 3 (9): 2771~2777.

    30. [30] Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew Chem Int Edit, 2010, 49 (48): 9068~9093.[30] Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew Chem Int Edit, 2010, 49 (48): 9068~9093.

    31. [31] Uno K, Niikura H, Morimoto M, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (34): 13558~13564.[31] Uno K, Niikura H, Morimoto M, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (34): 13558~13564.

    32. [32] Takagi Y, Kunishi T, Katayama T, Ishibashi Y, Miyasaka H, Morimoto M, Irie M. Photoch Photobio Sci, 2012, 11 (11): 1661~1665.[32] Takagi Y, Kunishi T, Katayama T, Ishibashi Y, Miyasaka H, Morimoto M, Irie M. Photoch Photobio Sci, 2012, 11 (11): 1661~1665.

    33. [33] Zhu W, Meng X, Yang Y, Zhang Q, Xie Y, Tian H. Chem-Eur J, 2010, 16 (3): 899~906.[33] Zhu W, Meng X, Yang Y, Zhang Q, Xie Y, Tian H. Chem-Eur J, 2010, 16 (3): 899~906.

    34. [34] Tian H, Chen B, Tu H Y, Müllen K. Adv Mater, 2002, 14 (12): 918~923.[34] Tian H, Chen B, Tu H Y, Müllen K. Adv Mater, 2002, 14 (12): 918~923.

    35. [35] Golovkova T A, Kozlov D V, Neckers D C. J Org Chem, 2005, 70 (14): 5545~5549.[35] Golovkova T A, Kozlov D V, Neckers D C. J Org Chem, 2005, 70 (14): 5545~5549.

    36. [36] Yagi K, Soong C F, Irie M. J Org Chem, 2001, 66 (16): 5419~5423.[36] Yagi K, Soong C F, Irie M. J Org Chem, 2001, 66 (16): 5419~5423.

    37. [37] Kawai T, Sasaki T, Irie M. Chem Commun, 2001, (8): 711~712.[37] Kawai T, Sasaki T, Irie M. Chem Commun, 2001, (8): 711~712.

    38. [38] Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. J Org Chem, 2001, 66 (11): 3913~3923.[38] Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. J Org Chem, 2001, 66 (11): 3913~3923.

    39. [39] Li C, Yan H, Zhang G F, Gong W L, Chen T, Hu R, Aldred M P, Zhu M Q. Chem-Asian J, 2014, 9 (1): 104~109.[39] Li C, Yan H, Zhang G F, Gong W L, Chen T, Hu R, Aldred M P, Zhu M Q. Chem-Asian J, 2014, 9 (1): 104~109.

    40. [40] Irie M, Fulcaminato T, Matsuda K, Kobatake S. Chem Rev, 2014, 114 (24): 12174~12277.[40] Irie M, Fulcaminato T, Matsuda K, Kobatake S. Chem Rev, 2014, 114 (24): 12174~12277.

    41. [41] Wang S, Shen W, Feng Y, Tian H. Chem Commun, 2006, (14): 1497~1499.[41] Wang S, Shen W, Feng Y, Tian H. Chem Commun, 2006, (14): 1497~1499.

    42. [42] Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D. Chem Mater, 2006, 18 (2): 235~237.[42] Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D. Chem Mater, 2006, 18 (2): 235~237.

    43. [43] Jiang G, Wang S, Yuan W, Zhao Z, Duan A, Xu C, Jiang L, Song Y, Zhu D. Eur J Org Chem, 2007, 2007 (13): 2064~2067.[43] Jiang G, Wang S, Yuan W, Zhao Z, Duan A, Xu C, Jiang L, Song Y, Zhu D. Eur J Org Chem, 2007, 2007 (13): 2064~2067.

    44. [44] Giordano L, Jovin T M, Irie M, Jares-Erijman E A. J Am Chem Soc, 2002, 124 (25): 7481~7489.[44] Giordano L, Jovin T M, Irie M, Jares-Erijman E A. J Am Chem Soc, 2002, 124 (25): 7481~7489.

    45. [45] Cao X, Zhou J, Zou Y, Zhang M, Yu X, Zhang S, Yi T, Huang C. Langmuir, 2011, 27 (8): 5090~5097.[45] Cao X, Zhou J, Zou Y, Zhang M, Yu X, Zhang S, Yi T, Huang C. Langmuir, 2011, 27 (8): 5090~5097.

    46. [46] Bossi M, Belov V, Polyakova S, Hell S W. Angew Chem Int Edit, 2006, 45 (44): 7462~7465.[46] Bossi M, Belov V, Polyakova S, Hell S W. Angew Chem Int Edit, 2006, 45 (44): 7462~7465.

    47. [47] Soh N, Yoshida K, Nakajima H, Nakano K, Imato T, Fukaminato T, Irie M. Chem Commun, 2007, (48): 5206~5208.[47] Soh N, Yoshida K, Nakajima H, Nakano K, Imato T, Fukaminato T, Irie M. Chem Commun, 2007, (48): 5206~5208.

    48. [48] Fölling J, Polyakova S, Belov V, van Blaaderen A, Bossi M L, Hell S W. Small, 2008, 4 (1): 134~142.[48] Fölling J, Polyakova S, Belov V, van Blaaderen A, Bossi M L, Hell S W. Small, 2008, 4 (1): 134~142.

    49. [49] Zheng H, Zhou W, Yuan M, Yin X, Zuo Z, Ouyang C, Liu H, Li Y, Zhu D. Tetrahedron Lett, 2009, 50 (14): 1588~1592.[49] Zheng H, Zhou W, Yuan M, Yin X, Zuo Z, Ouyang C, Liu H, Li Y, Zhu D. Tetrahedron Lett, 2009, 50 (14): 1588~1592.

    50. [50] Fukaminato T, Irie M. Adv Mater, 2006, 18 (24): 3225~3228.[50] Fukaminato T, Irie M. Adv Mater, 2006, 18 (24): 3225~3228.

    51. [51] Pärs M, Hofmann C C, Willinger K, Bauer P, Thelakkat M, Köhler J. Angew Chem Int Edit, 2011, 50 (48): 11405~11408.[51] Pärs M, Hofmann C C, Willinger K, Bauer P, Thelakkat M, Köhler J. Angew Chem Int Edit, 2011, 50 (48): 11405~11408.

    52. [52] Fukaminato T, Umemoto T, Iwata Y, Yokojima S, Yoneyama M, Nakamura S, Irie M. J Am Chem Soc, 2007, 129 (18): 5932~5938.[52] Fukaminato T, Umemoto T, Iwata Y, Yokojima S, Yoneyama M, Nakamura S, Irie M. J Am Chem Soc, 2007, 129 (18): 5932~5938.

    53. [53] Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Wurthner F. Chem-Eur J, 2012, 18 (43): 13651~13664.[53] Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Wurthner F. Chem-Eur J, 2012, 18 (43): 13651~13664.

    54. [54] Piao X J, Zou Y, Wu J C, Li C Y, Yi T. Org Lett, 2009, 11 (17): 3818~3821.[54] Piao X J, Zou Y, Wu J C, Li C Y, Yi T. Org Lett, 2009, 11 (17): 3818~3821.

    55. [55] Li C, Yan H, Zhao L X, Zhang G F, Hu Z, Huang Z L, Zhu M Q. Nat Commun, 2014, 5: 5709.[55] Li C, Yan H, Zhao L X, Zhang G F, Hu Z, Huang Z L, Zhu M Q. Nat Commun, 2014, 5: 5709.

    56. [56] Sheng X, Peng A, Fu H, Liu Y, Zhao Y, Ma Y, Yao J. Nanotechnology, 2007, 18 (14): 145707.[56] Sheng X, Peng A, Fu H, Liu Y, Zhao Y, Ma Y, Yao J. Nanotechnology, 2007, 18 (14): 145707.

    57. [57] Bu J, Watanabe K, Hayasaka H, Akagi K. Nat Commun, 2014, 5: 3379.[57] Bu J, Watanabe K, Hayasaka H, Akagi K. Nat Commun, 2014, 5: 3379.

    58. [58] Watanabe K, Hayasaka H, Miyashita T, Ueda K, Akagi K. Adv Funct Mater, 2015, 25 (19): 2794~2806.[58] Watanabe K, Hayasaka H, Miyashita T, Ueda K, Akagi K. Adv Funct Mater, 2015, 25 (19): 2794~2806.

    59. [59] Li C, Hu Z, Aldred M P, Zhao L X, Yan H, Zhang G F, Huang Z L, Li A D Q, Zhu M Q. Macromolecules, 2014, 47 (24): 8594~8601.[59] Li C, Hu Z, Aldred M P, Zhao L X, Yan H, Zhang G F, Huang Z L, Li A D Q, Zhu M Q. Macromolecules, 2014, 47 (24): 8594~8601.

    60. [60] Fukaminato T.J Photoch Photobio C, 2011, 12 (3): 177~208.[60] Fukaminato T.J Photoch Photobio C, 2011, 12 (3): 177~208.

    61. [61] Matsuda K, Irie M. J Am Chem Soc, 2000, 122 (30): 7195~7201.[61] Matsuda K, Irie M. J Am Chem Soc, 2000, 122 (30): 7195~7201.

    62. [62] Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y F, Ma D G, Zhu M Q. J Mater Chem, 2012, 22 (15): 7515~7528.[62] Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y F, Ma D G, Zhu M Q. J Mater Chem, 2012, 22 (15): 7515~7528.

    63. [63] Fukaminato T, Umemoto T, Iwata Y, Irie M. Chem Lett, 2005, 34 (5): 676~677.[63] Fukaminato T, Umemoto T, Iwata Y, Irie M. Chem Lett, 2005, 34 (5): 676~677.

    64. [64] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (13): 4984~4990.[64] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. J Am Chem Soc, 2011, 133 (13): 4984~4990.

    65. [65] Ross I M. Proceedings of the IEEE, 1998, 86 (1): 7~28.[65] Ross I M. Proceedings of the IEEE, 1998, 86 (1): 7~28.

    66. [66] Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Gotzinger S, Sandoghdar V. Nature, 2009, 460 (7251): 76~80.[66] Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Gotzinger S, Sandoghdar V. Nature, 2009, 460 (7251): 76~80.

    67. [67] Chang D E, Sorensen A S, Demler E A, Lukin M D. Nat Phys, 2007, 3 (11): 807~812.[67] Chang D E, Sorensen A S, Demler E A, Lukin M D. Nat Phys, 2007, 3 (11): 807~812.

    68. [68] Pars M, Gradmann M, Graf K, Bauer P, Thelakkat M, Kohler J. Sci. Rep., 2014, 4.[68] Pars M, Gradmann M, Graf K, Bauer P, Thelakkat M, Kohler J. Sci. Rep., 2014, 4.

    69. [69] Pärs M, Gräf K, Bauer P, Thelakkat M, Köhler J. Appl Phys Lett, 2013, 103 (22): 221115.[69] Pärs M, Gräf K, Bauer P, Thelakkat M, Köhler J. Appl Phys Lett, 2013, 103 (22): 221115.

    70. [70] Hell S W. Science, 2007, 316 (5828): 1153~1158.[70] Hell S W. Science, 2007, 316 (5828): 1153~1158.

    71. [71] Dedecker P, Flors C, Hotta J-i, Uji-i H, Hofkens J. Angew Chem Int Edit, 2007, 46 (44): 8330~8332.[71] Dedecker P, Flors C, Hotta J-i, Uji-i H, Hofkens J. Angew Chem Int Edit, 2007, 46 (44): 8330~8332.

    72. [72] Walter N G, Huang C Y, Manzo A J, Sobhy M A. Nat Methods, 2008, 5 (6): 475~489.[72] Walter N G, Huang C Y, Manzo A J, Sobhy M A. Nat Methods, 2008, 5 (6): 475~489.

    73. [73] Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M. J Am Chem Soc, 2004, 126 (45): 14843~14849.[73] Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M. J Am Chem Soc, 2004, 126 (45): 14843~14849.

    74. [74] JaeáLee M, HoáKang S. Chem Commun, 2012, 48 (31): 3745~3747.[74] JaeáLee M, HoáKang S. Chem Commun, 2012, 48 (31): 3745~3747.

    75. [75] Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. J Am Chem Soc, 2008, 130 (47): 15750~15751.[75] Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. J Am Chem Soc, 2008, 130 (47): 15750~15751.

    76. [76] Fernández-Suárez M, Ting A Y. Nat Rev Mol Cell Bio, 2008, 9 (12): 929~943.[76] Fernández-Suárez M, Ting A Y. Nat Rev Mol Cell Bio, 2008, 9 (12): 929~943.

    77. [77] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F. Science, 2006, 313 (5793): 1642~1645.[77] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F. Science, 2006, 313 (5793): 1642~1645.

    78. [78] Rust M J, Bates M, Zhuang X. Nat Methods, 2006, 3 (10): 793~796.[78] Rust M J, Bates M, Zhuang X. Nat Methods, 2006, 3 (10): 793~796.

    79. [79] Yan J, Zhao L X, Li C, Hu Z, Zhang G F, Chen Z Q, Chen T, Huang Z L, Zhu J, Zhu M Q. J Am Chem Soc, 2015.[79] Yan J, Zhao L X, Li C, Hu Z, Zhang G F, Chen Z Q, Chen T, Huang Z L, Zhu J, Zhu M Q. J Am Chem Soc, 2015.

    80. [80] Huang B, Wang W, Bates M, Zhuang X. Science, 2008, 319 (5864): 810~813.[80] Huang B, Wang W, Bates M, Zhuang X. Science, 2008, 319 (5864): 810~813.

    81. [81] Karuso P. Super resolution microscopy: It's all about the molecules. 2014 Nobel Prize in Chemistry II. 2015.[81] Karuso P. Super resolution microscopy: It's all about the molecules. 2014 Nobel Prize in Chemistry II. 2015.

    82. [82] Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photonics Rev, 2009, 3 (1/2): 180~202.[82] Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photonics Rev, 2009, 3 (1/2): 180~202.

    83. [83] Tian Z, Wu W, Li A D Q. Chemphyschem, 2009, 10 (15): 2577~2591.[83] Tian Z, Wu W, Li A D Q. Chemphyschem, 2009, 10 (15): 2577~2591.

    84. [84] Tian Z, Li A D Q, Hu D. Chem Commun, 2011, 47 (4): 1258~1260.[84] Tian Z, Li A D Q, Hu D. Chem Commun, 2011, 47 (4): 1258~1260.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  98
  • HTML全文浏览量:  6
文章相关
  • 收稿日期:  2015-07-10
  • 网络出版日期:  2015-07-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章