Citation: Mei-Xia Yang,  Zhen-Hong He,  Long-Rui Wang,  You-Xing Yang. Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas[J]. University Chemistry, ;2026, 41(2): 197-207. doi: 10.12461/PKU.DXHX202503012 shu

Route for Turning Waste CH4 and CO2 into Valuable Products: Reforming for Syngas

  • Corresponding author: Zhen-Hong He, hezhenhong@sust.edu.cn
  • Received Date: 3 March 2025
    Revised Date: 21 March 2025

  • The greenhouse effect poses one of the significant challenges to humanity. Among the various greenhouse gases, CO2 accounts for 60% to 70% of the total contribution. Importantly, CO2 is thermodynamically stable and chemically inert, making its conversion a difficult task. Moreover, CO2 emissions will have a long-term impact on the environment. On the other hand, CH4 contributes approximately 20% to the overall greenhouse effect. Despite its relatively low concentration, a signal CH4 molecule has a global warming potential 25 times greater than that of a CO2 molecule. To mitigate the increasing concentrations of CO2 and CH4, many efforts have been developed. Among these, the reforming of CH4 and CO2 to syngas is a promising approach. This process not only helps in addressing climate change but also enables the production of value-added chemicals. In this respect, this reaction holds important theoretical significance and practical value.
  • 加载中
    1. [1]

      Xia, D. P.; Chen, Y.; Li, C. N.; Liu, C. D.; Zhou, G. L. Int. J. Hydrogen Energy 2018, 43 (45), 20488.

    2. [2]

      Liu, W. M.; Li, L.; Lin, S. X.; Luo, Y. W.; Bao, Z. H.; Mao, Y. R.; Li, K. Z.; Wu, D. S; Peng, H. G. J. Energy Chem. 2022, 65, 34.

    3. [3]

      Thirumalarasu, B. A.; Rajagopalan, A.; Murugan, S.; Ragula, U. B. R. Renew. Energy 2024, 234, 121200.

    4. [4]

    5. [5]

      Jang, W. J.; Jeong, D. W.; Shim, J. O.; Kim, H. M.; Roh, H. S.; Son, I. H.; Lee, S. J. Appl. Energy 2016, 173, 80.

    6. [6]

      Zheng, X. G.; Tan, S. Y.; Dong, L. C.; Li, S. B.; Chen, H. M. Chem. Eng. J. 2015, 265, 147.

    7. [7]

      Jamsaz, A.; Pham Ngoc, N.; Wang, M.; Jeong, D. H.; Oh, E. S.; Shin, E. W. Chem. Eng. J. 2023, 476, 146821.

    8. [8]

      Jabbour, K. J. Energy Chem. 2020, 48, 54.

    9. [9]

      Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. D. J. Am. Chem. Soc. 2017, 139 (27), 9359.

    10. [10]

    11. [11]

      Singha, R. K.; Yadav, A.; Agrawal, A.; Shukla, A.; Adak, S.; Sasaki, T.; Bal, R. Appl. Catal. B-Environ. 2016, 191, 165.

    12. [12]

      Shang, Z. Y.; Li, S. G.; Li, L.; Liu, G. Z.; Liang, X. H. Appl. Catal. B-Environ. 2017, 201, 302.

    13. [13]

      Ekeoma, B. C.; Yusuf, M.; Johari, K.; Abdullah, B. Int. J. Hydrogen Energy 2022, 47 (98), 41596.

    14. [14]

      Deng, J.; Bu, K. K.; Shen, Y. J.; Zhang, X. Y.; Zhang, J. P.; Faungnawakij, K.; Zhang, D. S. Appl. Catal. B-Environ. 2022, 302, 120859.

    15. [15]

      Zhang, G. J.; Zhao, P. Y.; Xu, Y.; Qu, J. G. J. CO2 Util. 2017, 18, 326.

    16. [16]

      Tang, D. W.; Li, J. Z.; Cao, D. F.; An, Y. T.; Song, J. F.; Shen, X. H.; Zhang, X. ACS Appl. Mater. Interfaces 2025, 17 (2), 3457.

    17. [17]

      Guo, Y.; Lu, J. Y.; Liu, Q. R.; Bai, X. L.; Gao, L. J.; Tu, W. X.; Wang, Z. J. Catal. Commun. 2018, 116, 81.

    18. [18]

      Zhang, F.; Liu, Z. Y.; Zhang, S. H.; Akter, N.; Palomino, R. M.; Vovchok, D.; Orozco, I.; Salazar, D.; Rodriguez, J. A.; Llorca, J.; et al. ACS Catal. 2018, 8 (4), 3550.

    19. [19]

      Zhang, J. C.; Ge, B. H.; Liu, T. F.; Yang, Y. Z.; Li, B.; Li, W. Z. ACS Catal. 2019, 10 (1), 783.

    20. [20]

      Liang, D. F.; Wang, Y.; Wang, Y. H.; Chen, M. Q.; Xie, X. L.; Li, C.; Wang, J.; Yuan, L. Int. J. Hydrogen Energy 2024, 51, 1002.

    21. [21]

      De Araújo Moreira, T. G.; De Carvalho Filho, J. F. S.; Carvalho, Y.; de Almeida, J. M. A. R.; Nothaft Romano, P.; Falabella Sousa-Aguiar, E. Fuel 2021, 287, 119536.

    22. [22]

      Han, J.; Zhan, Y. Q; Street, J.; To, F.; Yu, F. Int. J. Hydrogen Energy 2017, 42 (29), 18364.

    23. [23]

      Yadav, P. K.; Das, T. Int. J. Hydrogen Energy 2019, 44 (3), 1659.

    24. [24]

      Shakir, M.; Prasad, M.; Ray, K.; Sengupta, S.; Sinhamahapatra, A.; Liu, S.; Vuthaluru, H. B. ACS Appl. Nano Mater. 2022, 5 (8), 10951.

    25. [25]

      Sun, Y. H.; Zhang, G. J.; Xu, Y.; Zhang, R. G. Int. J. Hydrogen Energy 2019, 44 (31), 16424.

    26. [26]

      Mosaad Awad, M.; Hussain, I.; Ahmed Taialla, O.; Ganiyu, S. A.; Alhooshani, K. Energy Convers. Manag. 2024, 311, 118508.

    27. [27]

    28. [28]

      Li, Y. X.; Li, J. G.; Yu, T. Q.; Qiu, L.; Hasan, S. M. N.; Yao, L.; Pan, H.; Arafin, S.; Sadaf, S. M.; Zhu, L.; et al. Sci. Bull. 2024, 69 (10), 1400.

    29. [29]

      Wang, Y. N.; Chan, Y. S.; Zhang, R. J.; Yan, B. H. Chem. Eng. J. 2024, 481, 148360.

    30. [30]

    31. [31]

    32. [32]

      Rawool, S. A.; Yadav, K. K.; Polshettiwar, V. Chem. Sci. 2021, 12, 4267.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    3. [3]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    4. [4]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    5. [5]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    9. [9]

      Chen Lin Huanjun Xu . ‘Thank-You Letter’ from CO2: Development of Technology Has Changed My Image. University Chemistry, 2026, 41(2): 238-241. doi: 10.12461/PKU.DXHX202502048

    10. [10]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    13. [13]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    14. [14]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    15. [15]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    16. [16]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    17. [17]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    18. [18]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(0)
  • Abstract views(251)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return