Citation: Xiaomin Kang,  Chuanbao Jiao. Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China[J]. University Chemistry, ;2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011 shu

Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China

  • Corresponding author: Xiaomin Kang, kangxm@imu.edu.cn
  • Received Date: 3 March 2025
    Revised Date: 9 April 2025

  • Scientific frontier achievements should be integrated into classroom teaching, aligning with the urgent needs of national science and technology development and environmental protection. A strong sense of social responsibility should permeate the entire curriculum. This teaching approach not only enriches students' professional knowledge and broadens their academic horizons but also fosters scientific thinking, innovation skills, and the ability to apply knowledge. It has significantly stimulated students’ curiosity and enthusiasm for scientific research. As a key component of inorganic chemistry in undergraduate education, coordination compounds have long been considered both a focal point and a challenge in inorganic chemistry due to their diverse types and wide-ranging properties. Recently, metal-organic frameworks (MOFs) have garnered attention for their unique structural characteristics, demonstrating significant potential for CO2 capture and green catalytic conversion. This has made MOFs a research hotspot both domestically and internationally. By combining the latest scientific research with accessible reaction examples, this teaching material introduces undergraduate students to recent advancements in the efficient catalytic conversion of CO2 into high-value fine chemicals using classical porous MOFs.
  • 加载中
    1. [1]

      Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48 (10), 2783.

    2. [2]

      Hou, S. L.; Dong, J.; Zhao, B. Adv. Mater. 2020, 32 (3), 1806163.

    3. [3]

      Liu, Q.; Wu, Q. L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6 (1), 5933.

    4. [4]

      Kolea, G. K.; Vittal. J. J. Chem. Soc. Rev. 2013, 42 (4), 1755.

    5. [5]

    6. [6]

      Li, H. L.; Eddaoudi, M.; Keeffe, M. O.; Yaghi, O. M. Nature 1999, 402, 276.

    7. [7]

      Xie, X. X.; Yang, Y. C.; Dou, B. H.; Li, Z. F.; Li, G. Coord. Chem. Rev. 2020, 404, 213100.

    8. [8]

      Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P.; et al. Adv. Mater. 2018, 30 (37), 1704303.

    9. [9]

    10. [10]

      Song, J. L; Zhang, Z. F.; Hu, S. Q.; Wu, T. B.; Jiang, T.; Han, B. X. Green. Chem. 2009, 11 (7), 1031.

    11. [11]

      Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2014, 136 (45), 15861.

    12. [12]

      Li, P. Z.; Wang, X. J.; Liu, J.; Lim, J. S.; Zou, R. Q.; Zhao, Y. L. J. Am. Chem. Soc. 2016, 138 (7), 2142.

    13. [13]

      Liang, J.; Chen, R. P.; Wang, X. Y.; Liu, T. T.; Wang, X. S.; Huang, Y. B.; Cao, R. Chem. Sci. 2017, 8 (2), 1570.

    14. [14]

      Li, Y.; Tian, X. Q.; Jiang, W. W.; Wu, P. Y.; Li, H. S.; Wang, M.; Lin, C.; Wang, J. Chem. Commun. 2021, 57 (82), 10803.

    15. [15]

      Chen, Y.; Li, F. F.; Liu, L. Y.; Zhou, Y. H. Chem. Eng. J. 2024, 490, 151657.

    16. [16]

      Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. Adv. Sci. 2016, 3 (11), 1600048.

    17. [17]

      Wang, X.; Gao, W. Y.; Niu, Z.; Wojtas, L.; Perman, J. A.; Chen, Y. S.; Li, Z.; Aguila, B.; Ma, S. Q. Chem. Commun. 2018, 54 (10), 1170.

    18. [18]

      Cao, C. S.; Shi, Y.; Xu, H.; Zhao, B. Chem. Commun. 2021, 57 (61), 7537.

    19. [19]

      Ding, W. Y.; Tai, H. B.; Tang, X. Y.; Xu, D. W.; Jin, S.; Kang, X. M.; Liu, Z. L. Appl. Catal. B-Environ. 2025, 361, 124685.

    20. [20]

      Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Zhao, B. Angew. Chem. Int. Ed. 2019, 58 (2), 577.

    21. [21]

      Das, R.; Nagaraja, C. M. Inorg. Chem. 2020, 59 (14), 9765.

    22. [22]

      Gu, A. L.; Zhang, Y. X.; Wu, Z. L.; Cui, H. Y.; Hu, T. D.; Zhao, B. Angew. Chem. Int. Ed. 2022, 61 (19), e202114817.

    23. [23]

      Song, B.; Liang, Y. H.; Zhou, Y.; Zhang, L.; Li, H.; Zhu, N. X.; Tang, B. Z.; Zhao, D.; Liu, B. J. Am. Chem. Soc. 2024, 146 (21), 14835.

    24. [24]

      Chang, Z. D.; Jing, X.; He, C.; Liu, X.; Duan, C. Y. ACS Catal. 2018, 8 (2), 1384.

    25. [25]

      Zhao, M. H.; Huang, S.; Fu, Q.; Li, W. F.; Guo, R.; Yao, Q. X.; Wang, F. L.; Cui, P.; Tung, C. H.; Sun, D. Angew. Chem. Int. Ed. 2020, 59 (45), 20031.

    26. [26]

      Jiang, X. L.; Jiao, Y. E.; Hou, S. L.; Geng, L. C.; Wang, H. Z.; Zhao, B. Angew. Chem. Int. Ed. 2021, 60 (37), 20417.

    27. [27]

      Zhao, X.; Qin, B. B.; He, Tao.; Wang, H. P.; Liu, J. W. Inorg. Chem. 2023, 62 (45), 18553.

    28. [28]

      Chen, X.; Song, J. Y.; Zheng, J.; Wang, Y. M.; Luo, J.; Weng, P. X.; Cai, B. C.; Lin, X. C.; Ning, G. H.; Li, D. J. Am. Chem. Soc. 2024, 146 (28), 19271.

  • 加载中
    1. [1]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    2. [2]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    16. [16]

      Zhe Ji Guangxu Lan Jiangnan Li Sihai Yang . A New Protocol to Construct Molecular Materials: A Brief Introduction on the 2025 Nobel Prize in Chemistry. University Chemistry, 2025, 40(12): 70-77. doi: 10.12461/PKU.DXHX202511097

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Changjie Yin Boyu Wang Dantong Qiao Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046

    20. [20]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return