Citation: Yucai Zhang,  Jun Jiang. Electrochemical Carbon Dioxide Reduction to Ethylene[J]. University Chemistry, ;2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006 shu

Electrochemical Carbon Dioxide Reduction to Ethylene

  • Corresponding author: Jun Jiang, jiang123@ustc.edu.cn
  • Received Date: 3 March 2025
    Revised Date: 25 March 2025

  • The increasingly severe “greenhouse effect” has made the resource utilization of carbon dioxide (CO2) an urgent priority. Compared to other alternative approaches, electrochemical CO2reduction to high-value-added fuels and chemicals powered by renewable electricity offers advantages such as mild operating conditions, environmental friendliness, and high efficiency. This review focuses on CO2-to-ethylene conversion, as ethylene has the largest market demand among CO2reduction products. We first provide a brief introduction to the fundamental reaction mechanisms. Next, we discuss advanced catalyst modification strategies and introduce four representative electrolyzers. We then summarize the current progress in CO2-to-ethylene conversion and highlight the existing scientific and technological challenges. Finally, we conclude with an outlook on the industrial application prospects of CO2-to-ethylene conversion.
  • 加载中
    1. [1]

      International Energy Agency, CO2 emissions in 2023. [2025-04-01]. https://www.iea.org/reports/co2-emissions-in-2023

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      Han, Y.; An, S.; Zhan, X.; Hao, L.; Xu, L.; Hong, S.; Park, D.; Chen, Y.; Xu, Y.; Zhao, J.; et al. CCS Chem. 2024, 6, 1477.

    7. [7]

      Cao, H. H.; He, Z. H.; Guo, P. P.; Tian, Y.; Wang, X.; Wang, K.; Wang, W.; Wang, H.; Yang, Y.; Liu, Z. T. ChemCatChem. 2025, 17, e202401133.

    8. [8]

      He, Z. H.; Li, Z. H.; Wang, Z. Y.; Wang, K.; Sun, Y. C.; Wang, S. W.; Wang, W. T.; Yang, Y.; Liu, Z. T. Green Chem. 2021, 23, 5775.

    9. [9]

      Yao, Z.; Cheng, H.; Xu, Y.; Zhan, X.; Hong, S.; Tan, X.; Wu, T. S.; Xiong, P.; Soo, Y.-L.; Li, M. M.-J.; et al. Nat. Commun. 2024, 15, 9881.

    10. [10]

    11. [11]

    12. [12]

      Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M.; et al. Nat. Catal. 2019, 3, 98.

    13. [13]

      Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53.

    14. [14]

      Chang, X.; Li, J.; Xiong, H.; Zhang, H.; Xu, Y.; Xiao, H.; Lu, Q.; Xu, B. Angew.Chem. Int. Ed. 2021, 61, e202111167.

    15. [15]

      Li, J.; Chang, X.; Zhang, H.; Malkani, A. S.; Cheng, M. J.; Xu, B.; Lu, Q. Nat. Commun. 2021, 12, 3264.

    16. [16]

      Kastlunger, G.; Wang, L.; Govindarajan, N.; Heenen, H. H.; Ringe, S.; Jaramillo, T.; Hahn, C.; Chan, K. ACS. Catal. 2022, 12, 4344.

    17. [17]

      Li, J.; Chen, Y.; Yao, B.; Yang, W.; Cui, X.; Liu, H.; Dai, S.; Xi, S.; Sun, Z.; Chen, W.; et al. J. Am. Chem. Soc. 2024, 146, 5693.

    18. [18]

      Ge, W.; Chen, Y.; Fan, Y.; Zhu, Y.; Liu, H.; Song, L.; Liu, Z.; Lian, C.; Jiang, H.; Li, C. J. Am. Chem. Soc. 2022, 144, 6613.

    19. [19]

    20. [20]

    21. [21]

      Yang, H.; Li, S.; Xu, Q. Chinese J. Catal. 2023, 48, 32.

    22. [22]

      Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, e2005798.

    23. [23]

      Liu, W.; Zhai, P.; Li, A.; Wei, B.; Si, K.; Wei, Y.; Wang, X.; Zhu, G.; Chen, Q.; Gu, X.; et al. Nat. Commun. 2022, 13, 1877.

    24. [24]

      Zi, X.; Zhou, Y.; Zhu, L.; Chen, Q.; Tan, Y.; Wang, X.; Sayed, M.; Pensa, E.; Geioushy, R. A.; Liu, K.; et al. Angew.Chem. Int. Ed. 2023, 62, e202309351.

    25. [25]

      Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X.; Duan, X.; et al. Nat. Catal. 2020, 3, 804.

    26. [26]

      She, X.; Zhai, L.; Wang, Y.; Xiong, P.; Li, M. M.-J.; Wu, T.-S.; Wong, M. C.; Guo, X.; Xu, Z.; Li, H.; et al. Nat. Energy 2024, 9, 81.

    27. [27]

      Zhang, Y. C.; Zhang, X. L.; Wu, Z. Z.; Niu, Z. Z.; Chi, L. P.; Gao, F. Y.; Yang, P. P.; Wang, Y. H.; Yu, P. C.; Duanmu, J. W.; et al. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, 9.

    28. [28]

      Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; Gao, F. Y.; Yang, P. P.; Chi, L. P.; Shi, L.; Wei, W. S.; Liu, R.; Chen, Z.; et al. J. Am. Chem. Soc. 2022, 144, 259.

    29. [29]

      Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C. T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; et al. Nature 2020, 581, 178.

    30. [30]

      Xia, C.; Wang, X.; He, C.; Qi, R.; Zhu, D.; Lu, R.; Li, F.-M.; Chen, Y.; Chen, S.; You, B.; et al. J. Am. Chem. Soc. 2024, 146, 20530.

    31. [31]

      Chen, S.; Ye, C.; Wang, Z.; Li, P.; Jiang, W.; Zhuang, Z.; Zhu, J.; Zheng, X.; Zaman, S.; Ou, H.; et al. Angew.Chem. Int. Ed. 2023, 62, e202315621.

    32. [32]

      Deng, T.; Jia, S.; Chen, C.; Jiao, J.; Chen, X.; Xue, C.; Xia, W.; Xing, X.; Zhu, Q.; Wu, H.; et al. Angew.Chem. Int. Ed. 2024, 63, e202313796.

    33. [33]

      Zhou, Y.; Martín, A. J.; Dattila, F.; Xi, S.; López, N.; Pérez-Ramírez, J.; Yeo, B. S. Nat. Catalysis 2022, 5, 545.

    34. [34]

      Zhang, W.; Ai, J.; Ouyang, T.; Yu, L.; Liu, A.; Han, L.; Duan, Y.; Tian, C.; Chu, C.; Ma, Y.; et al. J. Am. Chem. Soc. 2024, 146, 28214.

    35. [35]

      Xiao, Y.; Lu, J.; Chen, K.; Cao, Y.; Gong, C.; Ke, F. S. Angew.Chem. Int. Ed. 2024, 63, e202404738.

    36. [36]

      He, Q.; Li, H.; Hu, Z.; Lei, L.; Wang, D.; Li, T.-T. Angew. Chem. Int. Ed. 2024, 63, e202407090.

    37. [37]

      Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783.

    38. [38]

      Zhong, D.; Fang, Q.; Du, R.; Jin, Y.; Peng, C.; Cheng, D.; Li, T.; Zhao, T.; Zhang, S.; Zheng, Y.; et al. Angew. Chem. Int. Ed. 2025, e202501773.

    39. [39]

      Crandall, B. S.; Ko, B. H.; Overa, S.; Cherniack, L.; Lee, A.; Minnie, I.; Jiao, F. Nat. Chem. Eng. 2024, 1, 421.

    40. [40]

      Wei, P.; Gao, D.; Liu, T.; Li, H.; Sang, J.; Wang, C.; Cai, R.; Wang, G.; Bao, X. Nat. Nanotechnol. 2023, 18, 299.

    41. [41]

      Wang, J.; Zhang, Y.; Bai, H.; Deng, H.; Pan, B.; Li, Y.; Wang, Y. Angew.Chem. Int. Ed. 2024, 63, e202404110.

    42. [42]

      Zheng, Q.; Yan, Y.; Zhong, J.; Yan, S.; Zou, Z. Energy Environ. Sci. 2024, 17, 748.

    43. [43]

      Shin, H.; Hansen, K. U.; Jiao, F. Nat. Sustain. 2021, 4, 911.

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    5. [5]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    6. [6]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    7. [7]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    8. [8]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    14. [14]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    15. [15]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    16. [16]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    19. [19]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    20. [20]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

Metrics
  • PDF Downloads(1)
  • Abstract views(259)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return