Citation: Jiayi Yang,  Jianxiu Hao,  Huacong Zhou,  Quansheng Liu. “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles[J]. University Chemistry, ;2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105 shu

“Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles

  • Corresponding author: Jianxiu Hao, hjx2020@imut.edu.cn
  • Received Date: 20 February 2025
    Revised Date: 10 March 2025

  • The massive emission of carbon dioxide (CO2) has led to a series of environmental challenges; however, CO2 is also a valuable carbon resource. As a result, capturing CO2 and converting it into high-value chemicals has become an urgent area of research in both science and industry. Chemically, CO2 is considered a stable, safe, and abundant C1 resource. Converting CO2 into high-value chemicals not only addresses the issue of CO2 emissions but also facilitates its resource utilization. Among the various methods, the catalytic addition of CO2 to epoxides for the preparation of high-value cyclic carbonates is a promising strategy for CO2 utilization. This process is atomically efficient (100%), generates no by-products, and operates under mild reaction conditions. This review discusses the chemical utilization pathways of CO2, emphasizes efficient catalysts for the CO2 cycloaddition reaction, compares the catalytic activities of different types of catalysts, and concludes with a summary and outlook on the progress in CO2 cycloaddition research.
  • 加载中
    1. [1]

      Meng, L. H.; Yang, J. K.; Huo, Z. C.; Wu, Q.; Zhang, Y. Y.; Shi, D. X.; Chen, K. C.; Liu, H. L.; Xu, X. Y.; Li, H. S.; et al. Sep. Purif. Technol. 2024, 348, 127465.

    2. [2]

      Sun, J. F.; Qin, Y. J.; Zhang, Y. L.; Sa, Z. Y.; Liu, J.; Wang, Y. H.; Wang, C. Y.; Tan, Q. L. J. Mol. Struct. 2025, 1322, 140534.

    3. [3]

      Yan, S.; Li, W. Z.; He, D. F.; He, G. Y.; Chen, H. Q. Mol. Catal. 2023, 550, 113608.

    4. [4]

      McLaughlin, H.; Littlefield, A. A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B. K.; Bazilian, M. D.; Kim, J.; Griffiths, S. Renew. Sust Energ. Rev. 2023, 177, 113215.

    5. [5]

      Tan, Y. T.; Nookuea, W.; Li, H. L.; Thorin, E.; Yan, J. Y. Energ. Convers. Manage. 2016, 118, 204.

    6. [6]

      Liu, Y.; Li, S. J.; Yu, X. J.; Chen, Y.; Tang, X. N.; Hu, T. D.; Shi, L.; Pudukudy, M.; Shan, S. Y.; Zhi, Y. F. Mol. Catal. 2023, 547, 113344.

    7. [7]

      Weidlich, T.; Kamenická, B. Available Methods Enabling Chemical Utilization of Anthropogenic CO2 for Production of Cyclic Carbonates Using Homogeneous Non-Metallic//International Conference on Chemical Technology, 9th International Conference on Chemical Technology, Mikulov, Czech Republic, Apr 25-27, 2022; Vesely, M.; Hrdlicka, Z.; Hanika, J.; Lubojacky, J. Eds.; Czech Soc Industrial ChemistryNovotného lávka 5, Prague, 11668, Czech Republic, 2022.

    8. [8]

      Zhang, H. G.; Zhai, G. Y.; Lei, L. F.; Zhang, C. Y.; Liu, Y. Y.; Wang, Z. Y.; Cheng, H. F.; Zheng, Z. K.; Wang, P.; Dai, Y.; et al. J. Colloid Interf. Sci. 2022, 625, 33.

    9. [9]

      Zhang, Q. M.; Zhu, M.; Zhou, X. X. J. Inorg. Mater. 2021, 36 (11), 1145.

    10. [10]

      Torquato, L. D. M.; Pastrian, F. A. C.; Perini, J. A. L.; Irikura, K.; Batista, A. P. D.; de Oliveira, A. G. S.; de Torresi, S. I. C.; Zanoni, M. V. B. Appl. Catal. B-Environ. 2020, 261, 118221.

    11. [11]

      Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H.; et al. Appl. Catal. B-Environ. Energy 2019, 259, 118088.

    12. [12]

      Ge, H. B.; Zhang, B.; Liang, H. J.; Zhang, M. W.; Fang, K. G.; Chen, Y.; Qin, Y. Appl. Catal. B-Environ. 2020, 263, 118133.

    13. [13]

      Mao, Y.; Zha, F.; Tian, H.; Tang, X.; Chang, Y.; Guo, X. J. Fuel Chem. Technol. 2023, 51 (10), 1514.

    14. [14]

      Gunasekar, G. H.; Shin, J.; Jung, K. D.; Park, K.; Yoon, S. ACS Catal. 2018, 8 (5), 4346.

    15. [15]

      Hu, L. H.; Wnag, X.; Hu, K. R.; Chen, C.; Xu, Z. H.; Xu, W. Chinese J. Inorg. Chem. 2023, 39 (7), 1315.

    16. [16]

      Liu, G. X.; Li, C.; Chen, D.; Ni, X. F.; Jiang, L. M.; Shen, Z. Q. Chinese J. Catal. 2010, 31 (10), 1242.

    17. [17]

      Maheshwari, N.; Kumar, M.; Thakur, I. S.; Srivastava, S. Bioresource Technol. 2018, 254, 75.

    18. [18]

      Leclerc, H. O.; Erythropel, H. C.; Backhaus, A.; Lee, D. S.; Judd, D. R.; Paulsen, M. M.; Ishii, M.; Long, A.; Ratjen, L.; Bertho, G. G.; et al. ACS Sustainable Chem. Eng. 2024, 13 (1), 5.

    19. [19]

    20. [20]

      Mingxian, X. U.; Sihan, H. U.; Chunxiao, D.; Chunmian, L. I. N. J. Chem. Eng. Chin. Uni. 2011, 25 (3), 529.

    21. [21]

      Calabrese, C.; Giacalone, F.; Aprile, C. Catalysts 2019, 9 (4), 325.

    22. [22]

      Feng, Y.; Yao, J. F. Sep. Purif. Technol. 2025, 356, 130027.

    23. [23]

      Wang, Q.; Chen, P. B.; Li, X. J.; Liang, Y.; Pan, Y. M. Asian J. Org. Chem. 2023, 12 (8). e202300308

    24. [24]

      Hu, L. H.; Chen, L.; Peng, X.; Zhang, J. W.; Mo, X. H.; Liu, Y. J.; Yan, Z. C. Micropor. Mesopor. Mat. 2020, 299, 110123.

    25. [25]

      Yin, H. Q.; Cui, M. Y.; Wang, H.; Peng, Y. Z.; Chen, J.; Lu, T. B.; Zhang, Z. M. Inorg. Chem. 2023, 62 (34), 13722.

    26. [26]

      Ma, Z. Y.; Chen, P. B.; Wu, C. C.; Liang, Y.; Pan, Y. M. Asian J. Org. Chem. 2024, 14 (1), e202400492.

    27. [27]

      Chakraborty, D.; Shekhar, P.; Singh, H. D.; Kushwaha, R.; Vinod, C. P.; Vaidhyanathan, R. Chem.-Asian J. 2019, 14 (24), 4767.

    28. [28]

      Haque, N.; Biswas, S.; Ghosh, S.; Chowdhury, A. H.; Khan, A.; Islam, S. M. ACS Appl. Nano Mater. 2021, 4 (8), 7663.

    29. [29]

      Ullah, H.; Ullah, Z.; Khattak, Z. A. K.; Tahir, M.; Kang, E.; Verpoort, F.; Kim, H. Y. ChemSusChem 2025, e20240104

    30. [30]

      Singh, G.; Nagaraja, C. M. J. CO2 Util. 2021, 53, 101716.

    31. [31]

      Tariq, W.; Pudukudy, M.; Liu, Y.; Li, S. J.; Zhang, C. R.; Haider, A. A.; Lin, L.; Murtaza, G.; Tahir, M. N.; Zhi, Y. F.; et al. Sep. Purif. Technol. 2025, 353, 128361.

    32. [32]

      Koohsaryan, E.; Anbia, M. Chinese J. Catal. 2016, 37 (4), 447.

    33. [33]

      Gao, B. H.; Li, W. J.; Chai, Y. C.; Wu, G. J.; Li, L. D. ChemCatChem 2024, 17 (1), e202401385

    34. [34]

      Li, J. W.; Wang, T.; Tao, S.; Chen, F.; Li, M.; Liu, N. Chinese J. Org. Chem. 2024, 44 (10), 3213.

    35. [35]

      Yamazaki, K.; Moteki, T.; Ogura, M. J. Jpn. Petrol. Inst. 2020, 63 (3), 149.

    36. [36]

      Li, J.; Lu, X.; Zhou, C.; Sun, D.; An, W.; Wang, X.; Shao, S.; Lu, B. Appl. Chem. Ind. 2024, 53 (7), 1668.

    37. [37]

      Damiano, C.; Sonzini, P.; Intrieri, D.; Gallo, E. J. Porphyr. Phthalocya 2020, 24 (5–7), 809.

    38. [38]

      Chen, M.; Liu, X. Y.; Yang, Y. Y.; Xu, W.; Chen, K. C.; Luo, R. C. ACS Appl. Mater. Interfaces 2023, 15 (6), 8263.

    39. [39]

      Dias, L. D.; Carrilho, R. M. B.; Henriques, C. A.; Calvete, M. J. F.; Masdeu-Bultó, A. M.; Claver, C.; Rossi, L. M.; Pereira, M. M. ChemCatChem 2018, 10 (13), 2792.

    40. [40]

      Yang, M.; Zhong, X.; Chen, Q. Chem Ind & Eng Pro 2017, 36 (9), 3300.

    41. [41]

      Deng, Q. Y.; He, G. H.; Pan, Y.; Ruan, X. H.; Zheng, W. J.; Yan, X. M. RSC Adv. 2016, 6 (3), 2217.

    42. [42]

      Della Monica, F.; Buonerba, A.; Paradiso, V.; Milione, S.; Grassi, A.; Capacchione, C. Adv. Synth. Catal. 2019, 361 (2), 283.

    43. [43]

      Chen, J.; Wu, Q.; Shi, D. X.; Zhang, Y. Y.; Chen, K. C.; Li, H.; Xu, B. H.; Li, H. S. Sep. Purif. Technol. 2025, 355, 129734.

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    13. [13]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    14. [14]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    15. [15]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    16. [16]

      Xiaomin Kang Chuanbao Jiao . Application of Metal-Organic Frameworks in CO2 Catalytic Conversion: Promoting “Double Carbon” Actions for a Beautiful China. University Chemistry, 2026, 41(2): 208-217. doi: 10.12461/PKU.DXHX202503011

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(0)
  • Abstract views(285)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return