Citation: Yuwei Song,  Wan He,  Kaiyue Jiang,  Mengzhao Xi,  Xinyue Wang,  Jie Li,  Yan Zhang. Learning and Memorizing Common Named Reactions in College Organic Chemistry[J]. University Chemistry, ;2026, 41(2): 400-410. doi: 10.12461/PKU.DXHX202501004 shu

Learning and Memorizing Common Named Reactions in College Organic Chemistry

  • Corresponding author: Yan Zhang, zhangyan001@zjnu.edu.cn
  • Received Date: 3 January 2025
    Revised Date: 12 February 2025

  • Named reactions constitute a crucial component of undergraduate organic chemistry education. A thorough understanding of these reactions significantly enhances chemistry students' comprehension of the mechanisms underlying fundamental organic transformations. However, the dispersed presentation of named reactions in textbooks, coupled with insufficient systematic organization in teaching, often leads to student confusion and the development of avoidance behaviors due to perceived difficulty. To address these challenges, this study systematically organizes common organic chemistry named reactions, categorizing them based on principles including carbon atom addition/removal, functional group transformations, and shared reaction intermediates. Teaching practice demonstrates that students respond positively to and appreciate this structured approach to learning named reactions.
  • 加载中
    1. [1]

      Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. xi–xiii.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Kirmse, W. Eur. J. Org. Chem. 2002, 14, 2193.

    6. [6]

      Nielsen, A. T.; Houlihan, W. J. Org. React. 2004, 16, 1.

    7. [7]

      Heravi, M. M.; Janati, F.; Zadsirjan, V. Monatsh. Chem 2020, 151, 439.

    8. [8]

      Sarah, J.; Saranya, S.; Ujwaldev, S. M.; Anilkumar, G. Chemist. 2018, 91 (2), 50.

    9. [9]

      Basavaiah, D.; Rao, K. S.; Reddy, R. Chem. Soc. Rev. 2007, 36 (10), 1581.

    10. [10]

      Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, 6, No. 6.

    11. [11]

      Fuson, R. C.; Mckeever, C. H. Org. React. 1942, 1, 63.

    12. [12]

      Menon, R. S.; Biju, A. T.; Nair, V. Beilstein J. Org. Chem. 2016, 12, 444.

    13. [13]

      Khademi, Z.; Heravi, M. M. Tetrahedron 2022, 103, 132573.

    14. [14]

      Sambiagio, C.; Marsden, S.; Blacker, A. J.; Mcgowan, P. Chem. Soc. Rev. 2014, 43 (10), 3525.

    15. [15]

      Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40 (10), 5084.

    16. [16]

      Beletskaya, I. P.; Alonso, F.; Tyurin, V. Coord. Chem. Rev. 2019, 385, 137.

    17. [17]

      Olson, J. A.; Shea, K. M. Acc. Chem. Res. 2011, 44 (5), 311.

    18. [18]

      Saraiva, M. F.; Couri, M. R. C.; Hyaric, M. L. de Almeida, M. V. Tetrahedron 2009, 65 (18), 3563.

    19. [19]

      Ghosh, A. K.; Sarkar, A.; Brindisi, M. Org. Biomol. Chem. 2018, 16 (12), 2006.

    20. [20]

      Katori, T.; Itoh, S.; Sato, M.; Yamataka, H. J. Am. Chem. Soc. 2010, 132 (10), 3413.

    21. [21]

      Debnath, P. Curr. Org. Chem. 2019, 23 (22), 2402.

    22. [22]

      Rowett, A. C.; Heard, D. M.; Koria, P.; Dean, A. C.; Sweeting, S. G.; Lennox, A. J. J. Chem. Eur. J. 2024, 30 (11), e202403045.

    23. [23]

      Kaur, K.; Srivastava, S. New J. Chem. 2020, 44, 18530.

    24. [24]

      Graulich, N. WIREs Comput. Mol. Sci. 2011, 1, 172.

    25. [25]

      Gregoritza, M.; Brandl, F. P. Eur. J. Pharm. Biopharm. 2015, 97, 428.

    26. [26]

      Vanecko, J. A.; Wan, H.; West, F. G. Tetrahedron 2006, 62 (6), 1043.

    27. [27]

      Zimmerman, H. E. Acc. Chem. Res. 2012, 45 (2), 164.

    28. [28]

      Viesca, F. S.; Berros, M.; Gómez, R. Am. J. Chem. 2018, 8 (1), 8.

    29. [29]

      Jin, Y.; Liu, M.; Cong, H.; Ge, Q. M. Curr. Org. Chem. 2022, 26 (5), 507.

    30. [30]

      Geier, S. J.; Vogels, C. M.; Melanson, J. A.; Westcott, S. A. Chem. Soc. Rev. 2022, 51 (21), 8877.

    31. [31]

      Bora, P.; Bora, B.; Bora, U. New. J. Chem. 2021, 45 (37), 17077.

  • 加载中
    1. [1]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    2. [2]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    3. [3]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    4. [4]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    5. [5]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

    8. [8]

      Linlin Wang Yanqin Chen Feng Li Ruikang Tan . Practical Exploration of Graded Teaching in the Public Organic Chemistry Course for Agricultural Science Students. University Chemistry, 2025, 40(7): 48-54. doi: 10.12461/PKU.DXHX202409054

    9. [9]

      Di Xu Li Dai Wenzhi Yao Li Wang Fang Zhang Xin Gao . Exploration and Application of Smart Teaching in Organic Chemistry. University Chemistry, 2025, 40(9): 189-195. doi: 10.12461/PKU.DXHX202412072

    10. [10]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    11. [11]

      Jian He Dinglin Zhang Liping Wu Ying Bao Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092

    12. [12]

      Dawei Zhang Yuqian Zhao Mingyu Jiao Yan Wang . Cultivation of Students’ Critical Thinking in the Practice of Ideological and Political in Organic Chemistry Courses: Taking the Discrimination and Analysis of Chemical Rumors as Examples. University Chemistry, 2025, 40(4): 181-188. doi: 10.12461/PKU.DXHX202405211

    13. [13]

      Xiaoli Li Zhongyi Li Yanbing Wang . Exploration and Practice of Blended Learning in Organic Chemistry Based on Advanced and Basic Knowledge Points: A Case Study of the Animal Medicine Major. University Chemistry, 2026, 41(2): 131-139. doi: 10.12461/PKU.DXHX202501013

    14. [14]

      Xipu He Wengui Duan Guishan Lin . Reform and Practice of Organic Chemistry Teaching for Non-Chemistry Major under the Four New Construction: Taking the Organic Chemistry Course Reform of Biological Science Major at Guangxi University as an Example. University Chemistry, 2025, 40(7): 42-47. doi: 10.12461/PKU.DXHX202408021

    15. [15]

      Huiwen Yao Ming Yuan Shunbo Zhang Yongsheng Gao Tangbin Liao Shumin Feng Li Cao . Practice and Application of the “Online and Offline + BOPPPS” Teaching Model in Organic Chemistry at Traditional Chinese Medicine Institutions. University Chemistry, 2025, 40(11): 127-133. doi: 10.12461/PKU.DXHX202412122

    16. [16]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    17. [17]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    18. [18]

      Zhichang Xiao Xiaohui Li Ling Zhang Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058

    19. [19]

      Qi Lin Jianhua Liu Liyun Yao Xiuyan Yang Weina He Ruolin Yang . Exploring the Application of Superstar AI Teaching Assistant in Medical Organic Chemistry Courses. University Chemistry, 2025, 40(9): 142-147. doi: 10.12461/PKU.DXHX202502035

    20. [20]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

Metrics
  • PDF Downloads(3)
  • Abstract views(247)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return