Citation:
Qi Zhang, Ziyu Liu, Hongxia Tan, Jun Tong, Dazhen Xu. Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins[J]. University Chemistry,
;2025, 40(11): 199-209.
doi:
10.12461/PKU.DXHX202412064
-
β-Hydroxy sulfone is a prevalent structural motif in many biologically active molecules, and provide useful building blocks in organic synthesis. Recent years have witnessed growing interest among chemists in the direct construction of β-hydroxy sulfones through olefin difunctionalization. This paper first introduces some representative compounds containing β-hydroxy sulfone moiety, then reviews the progress for the construction of β-hydroxy sulfones via direct difunctionalization of olefins. At the end, future development prospects in this field are proposed.
-
Keywords:
- Radical,
- Oxidation,
- Sulfonation,
- Olefin
-
-
-
[1]
Sadao, O.; Yawara, T.; Toshiyuki, K.; Yoshie, N.; Atsushi, S.; Teruo, T.; Shinobu, H.; Tamako, H.; Yasuki, K.; Takashi, F. et al. Chem. Pharm. Bull. 2000, 48, 694.
-
[2]
Hiromichi, E.; Yasushi, K.; Sunao, T.; Minoru, T.; Susumu, S.; Kouiti, Y.; Setsuo, N.; Masaki, O.; Kazuki, M.; Kazuya, I.; et al. Chem. Pharm. Bull. 2001, 49, 173.
-
[3]
Guerrini, A.; Tesei, A.; Ferroni, C.; Paganelli, G.; Zamagni, A.; Carloni, S.; Di Donato, M.; Castoria, G.; Leonetti, C.; Porru, M. et al. J. Med. Chem. 2014, 57, 7263.
-
[4]
Fortugno, C.; Varchi, G.; Guerrini, A.; Carrupt, P. A.; Bertucci, C. J. Pharm. Biomed. Anal. 2014, 95, 151.
-
[5]
Bohl, C. E.; Gao, W. Q.; Miller, D. D.; Bell, C. E.; Dalton, J. T. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6201.
-
[6]
Lee, B. J.; Lee, G. J.; Montgomery, D. C.; Quintana, E.; Singh, M.; Smith, J.; Wildes, D. E.; Yang, Y. C. Use of Sosl Inhibitors with Mtor Inhibitors to Treat Cancers. PCT/US2022/028711, 2022-05-11.
-
[7]
Pham, S. M.; Chakravarty, S.; Chen, J.; Kankanala, J.; Barde, A.; Nayak, A. K.; Hung, D. Anti-Cancer Nuclear Hormone Receptor-Targeting Compounds. PCT/US2019/032295, 2019-05-14.
-
[8]
Su, J.; Tang, H.; McKittrick, B. A.; Xu, R.; Clader, J. W.; Greenlee, W. J.; Hyde, L.; Zhang, L. Bioorg. Med. Chem. Lett. 2011, 21, 3447.
-
[9]
Lassalas, P.; Oukoloff, K.; Makani, V.; James, M.; Tran, V.; Yao, Y. M.; Huang, L. C.; Vijayendran, K.; Monti, L.; Trojanowski, J. Q. et al. ACS Med. Chem. Lett. 2017, 8, 864.
-
[10]
Ashton, W. T.; Cantone, C. L.; Tolman, R. L.; Greenlee, W. J.; Lynch, R. J.; Schorn, T. W.; Strouse, J. F.; Siegl, P. K. S. J. Med. Chem. 1992, 35, 2772.
-
[11]
Brown, G. R.; Clarke, D. S.; Foubister, A. J.; Freeman, S.; Harrison, P. J.; Johnson, M. C.; Mallion, K. B.; McCormick, J.; McTaggart, F.; Reid, A. C. et al. J. Med. Chem. 1996, 39, 2971.
-
[12]
Ramos-Soriano, J.; Niss, U.; Angulo, J.; Angulo, M.; Moreno-Vargas, A. J.; Carmona, A. T.; Ohlson, S.; Robina, I. Chem. Eur. J. 2013, 19, 17989.
-
[13]
Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151.
-
[14]
Freitas, Q. P. S. B.; Lira, R. A. G.; Freitas, J. J. R.; Zeni, G.; Menezes, P. H. J. Braz. Chem. Soc. 2018, 29, 1167.
-
[15]
Bi, W.-Z.; Zhang, W.-J.; Feng, S.-X.; Li, Z.-J.; Ma, H.-L.; Zhu, S.-H.; Chen, X.-L.; Qu, L.-B.; Zhao, Y.-F. New J. Chem. 2019, 43, 17941.
-
[16]
Zhang, J.; Xie, W.; Ye, S.; Wu, J. Org. Chem. Front. 2019, 6, 2254.
-
[17]
Yu, Y.; Wang, Z.; Fang, Z.; Zhang, Q.; Li, D. Asian J. Org. Chem. 2023, 12, e202300059.
-
[18]
Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem. Int. Ed. 2013, 52, 7156.
-
[19]
Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191.
-
[20]
Choudhuri, K.; Achar, T. K.; Mal, P. Adv. Synth. Catal. 2017, 359, 3566.
-
[21]
Wang, Y. J.; Jiang, W.; Huo, C. J. Org. Chem. 2017, 82, 10628.
-
[22]
Gong, H.; Zhao, Y.; Meng, X.; Cai, C. Eur. J. Org. Chem. 2023, 26, e202300675.
-
[23]
Pagire, S. K.; Paria, S.; Reiser, O. Org. Lett. 2016, 18, 2106.
-
[24]
Bu, M.-J.; Cai, C.; Gallou, F.; Lipshutz, B.-H. Green Chem. 2018, 20, 1233
-
[25]
Xia, P.-J.; Liu, F.; Li, S.-H.; Xiao, J.-A. Org. Chem. Front. 2022, 9, 709.
-
[26]
Liu, C.; Yang, Y.-J.; Dong, J.-Y.; Zhou, M.-D.; Li, L.; Wang, H. Org. Chem. Front. 2019, 6, 3944.
-
[27]
Qian, Z.-M.; Zuo, K.-L.; Guan, Z.; He, Y.-H. Tetrahedron 2021, 83, 131999.
-
[28]
Yadav, N.; Payra, S.; Tamuly, P.; Moorthy, J. N. Org. Biomol. Chem. 2023, 21, 7994.
-
[29]
Chen, Y.-X.; Wang, Z.-J.; Xiao, J.-A.; Chen, K.; Xiang, H.-Y.; Yang, H. Org. Lett. 2021, 23, 6558.
-
[30]
Chan, C.-K.; Lo, N.-C.; Chen, P.-Y.; Chang, M.-Y. Synthesis 2017, 49, 4469.
-
[31]
Luo, X.; Wang, S.; Lei, A. Adv. Synth. Catal. 2022, 364, 1016.
-
[32]
Feng, Q.; He, T.; Qian, S.; Xu, P.; Liao, S.; Huang, S. Nat. Commun. 2023, 14, 8278.
-
[1]
-
-
-
[1]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[2]
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
-
[3]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[4]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[5]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[6]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[7]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[8]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[9]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[10]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[11]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[12]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[13]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[14]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[15]
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
-
[16]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[17]
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
-
[18]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[19]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(169)
- HTML views(15)
Login In
DownLoad: