Citation: Dan Liu. 可见光-有机小分子协同催化的不对称自由基反应研究进展[J]. University Chemistry, ;2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101 shu

可见光-有机小分子协同催化的不对称自由基反应研究进展

  • Received Date: 24 August 2024
    Revised Date: 23 October 2024

  • 近年来,有机小分子催化的不对称自由基反应在有机合成领域受到了广泛关注,该策略反应条件温和,并表现出优异的区域选择性和立体选择性。尤其是可见光催化快速发展,为该领域提供了新生机。本文介绍了基于可见光与有机小分子催化策略结合的不对称自由基反应研究进展,主要内容包括:可见光-手性胺协同催化,可见光-卡宾协同催化,以及可见光-氢键催化剂协同催化的不对称自由基反应。
  • 加载中
    1. [1]

    2. [2]

      Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.

    3. [3]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.

    4. [4]

      MacMillan, D. W. Nature 2008, 455, 304.

    5. [5]

      Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.

    6. [6]

      Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.

    7. [7]

      Zhu, L.; Wang, D.; Jia, Z.; Lin, Q.; Huang, M.; Luo, S. ACS Catal. 2018, 8, 5466.

    8. [8]

      Nicewicz, D. A.; MacMillan, D. W. Science 2008, 322, 77.

    9. [9]

      Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.

    10. [10]

      Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.

    11. [11]

      Li, M.; Sang, Y.; Xue, X.-S.; Cheng, J.-P. J. Org. Chem. 2018, 83, 3333.

    12. [12]

      Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951.

    13. [13]

      Rigotti, T.; Casado-Sánchez, A.; Cabrera, S.; Pérez-Ruiz, R.; Liras, M.; de la Peña O’Shea, V. A.; Alemán, J. ACS Catal. 2018, 8, 5928.

    14. [14]

      Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.

    15. [15]

      Saux, E. L.; Ma, D.; Bonilla, P.; Holden, C. M.; Lustosa, D.; Melchiorre, P. Angew. Chem. Int. Ed. 2021, 60, 5357.

    16. [16]

      Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.

    17. [17]

      Spinnato, D.; Schweitzer-Chaput, B.; Giulio Goti, M. O.; Melchiorre, P. Angew. Chem. Int. Ed. 2020, 59, 9485.

    18. [18]

      Li, L.-J.; Zhang, J.-C.; Li, W.-P.; Zhang, D.; Duanmu, K.; Yu, H.; Ping, Q.; Yang, Z.-P. J. Am. Chem. Soc. 2024, 146, 9404.

    19. [19]

      Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 8727.

    20. [20]

      Bay, A. V.; Scheidt, K. A. Trends in Chem. 2022, 4, 277.

    21. [21]

      DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.

    22. [22]

      Choi, H.; Mathi, G. R.; Hong, S.; Hong, S. Nat. Commun. 2022, 13, 1776.

    23. [23]

      Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. 2008, 47, 4638.

    24. [24]

      Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.

    25. [25]

      Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083.

    26. [26]

      Lahdenperä, A. S. K.; Bacoş, P. D.; Phipps, R. J. J. Am. Chem. Soc. 2022, 144, 22451.

    27. [27]

      Li, J.; Kong, M.; Qiao, B.; Lee, R.; Zhao, X.; Jiang, Z. Nat. Commun. 2018, 9, 2445.

    28. [28]

      Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.

    29. [29]

      Liang, D.; Chen, J.-R.; Tan, L.-P.; He, Z.-W.; Xiao, W.-J. J. Am. Chem. Soc. 2022, 144, 6040.

    30. [30]

      Che, C.; Lu, Y.-N.; Wang, C.-J. J. Am. Chem. Soc. 2023, 145, 2779.

    31. [31]

      Fu, Q.; Cao, S.; Wang, J.; Lv, X.; Wang, H.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2024, 146, 8372.

    32. [32]

      He, F.-S.; Zhang, C.; Jiang, M.; Lou, L.; Wu, J.; Ye, S. Chem. Sci. 2022, 13, 8834.

    33. [33]

      Zhang, C.; Tang, Z.; Qiu, Y.; Tang, J.; Ye, S.; Li, Z.; Wu, J. Chem. Catal. 2022, 2, 164.

    34. [34]

      Zhang, J.-L.; He, W.-B.; Hu, X.-Q.; Xu, P.-F. Sci. China Chem. 2024, 67, 945.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(36)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return