Citation: Jiatong Hu,  Qiyi Wang,  Ruiwen Tang,  Jiajing Feng. Photocatalytic Journey of Perylene Diimides in a Competitive Arena[J]. University Chemistry, ;2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015 shu

Photocatalytic Journey of Perylene Diimides in a Competitive Arena

  • Corresponding author: Jiajing Feng, fengjiajing@cugb.edu.cn
  • Received Date: 1 July 2024
    Revised Date: 22 October 2024

  • Perylene diimides (PDIs) and their derivatives are organic semiconductor materials with exceptional optoelectronic properties, extensively researched and applied in high-tech fields such as organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors in recent years. Their advantages—such as low cost, strong visible light absorption, ease of band edge modulation, and the ability to form ordered supramolecular structures—have positioned them as rising stars in photocatalysis. This article incorporates elements of Chinese traditional culture and employs a personified approach in the form of a martial arts tournament to illustrate the structures and characteristics of PDI materials. By comparing the photocatalytic performance of PDIs with other photocatalytic materials, the paper highlights the advantages and challenges of PDIs in photocatalysis and offers insights into their promising development prospects in this field.
  • 加载中
    1. [1]

      Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746.

    2. [2]

      Haselmann, G. M.; Eder, D. ACS Catal. 2017, 7, 4668.

    3. [3]

      Gao, C. L.; Li, Y. L.; Zhang, Z. H.; Li, W. M.; Zhong, J. X.; Zhang, H.; Zhang, Y. H.; Deng, L. C.; Sun, Z. C.; Chen, G.; et al. Chem. Eng. J. 2022, 446, 137301.

    4. [4]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.

    5. [5]

      Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. Adv. Mater. 2019, 31, 1806626.

    6. [6]

    7. [7]

    8. [8]

      Li, C.; Wonneberger, H. Adv. Mater. 2012, 24 (5), 613.

    9. [9]

      Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclère, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2009, 131 (2), 833.

    10. [10]

      Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z.; et al. J. Am. Chem. Soc. 2009, 131 (17), 6215.

    11. [11]

      Liu, D.; Wang, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F. Adv. Mater. 2016, 28, 7284.

    12. [12]

    13. [13]

      Feng, J.; Jiang, W.; Wang, Z. Chem. Asian J. 2018, 13, 20.

    14. [14]

      Li, Y.; Zhang, X. L.; Liu, D. J. Photoch. Photobio. C 2021, 48, 100436.

    15. [15]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.

    16. [16]

      Sheng, Y. Q.; Li, W. L.; Xu, L. L.; Zhu, Y. F. Adv. Mater. 2022, 34, 2102354.

    17. [17]

      Kong, K. Y.; Zhang, S. C.; Chu, Y. M.; Hu, Y.; Yu, F. T.; Ye, H. N.; Ding, H. R.; Hua, J. L. Chem. Commun. 2019, 55, 8090.

    18. [18]

      Liu, W. X.; He, C.; Huang, S. J.; Zhang, K. F.; Zhu, W.; Liu, L. P.; Zhang, Z. J.; Zhu, E. W.; Chen, Y.; Chen, C. Angew. Chem. Int. Ed. 2023, 62, e202304773.

    19. [19]

      Xu, H. H.; Wang, Z. Q.; Feng, S. F.; Liu, X. M.; Gong, X. Q.; Hua, J. L. Int. J. Hydrogen Energ. 2023, 48, 8071.

    20. [20]

      Zhang, Y. N.; Wang, D.; Liu, W. X.; Lou, Y.; Zhang, Y.; Dong, Y. M.; Xu, J.; Pan, C. S.; Zhu, Y. F. Appl. Catal. B 2022, 300, 120762

    21. [21]

      Liu, D.; Yang, X.; Chen, P. Y.; Zhang, X. L.; Chen, G. Y.; Guo, Q. W.; Hou, H.; Li, Y. Adv. Mater. 2023, 35, 2300655.

    22. [22]

      Zhang, Z. J.; Wang, J.; Liu, D.; Luo, W. J.; Zhang, M.; Jiang, W. J.; Zhu, Y. F. ACS Appl. Mater. Interfaces 2016, 8, 30225.

    23. [23]

      Gao, X. M.; Gao, K. L.; Li, X. B.; Shang, Y. Y.; Fu, F. Catal. Sci. Technol. 2020, 10, 372.

    24. [24]

      Liu, D.; Chen, L. P.; Chen, W. B.; Qin, M. T.; Wei, S. Q. Dalton T. 2021, 50, 4008.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    4. [4]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    17. [17]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(2)
  • Abstract views(729)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return