Citation: Yaqin Zheng,  Lian Zhuo,  Meng Li,  Chunying Rong. Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations[J]. University Chemistry, ;2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119 shu

Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations

  • Corresponding author: Chunying Rong, rongchunying@aliyun.com
  • Received Date: 27 June 2024
    Revised Date: 2 September 2024

  • The electronic effects of substituents on the benzene ring are the dominant factors influencing their directing effects, which are a key topic in fundamental organic chemistry. In this work, we first summarize the theoretical methods for analyzing predicting the substituent directing effects, as discussed in the literature. Quantum chemistry calculations are then employed to investigate the charge distribution and energetic profiles of several benzene derivatives, with complex electronic effects examined. The findings provide a quantitative understanding of the electronic effects of substituents from a quantum chemical perspective. This research aims to stimulate students' interest in computational chemistry and enhance their ability to approach problems from multiple angles, thereby deepening their understanding of the directing effects of substituents.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Liu, S. B. J. Chem. Phys. 2014, 141, 194109.

    4. [4]

      Liu, S. B. J. Phys. Chem. A 2015, 119, 3107.

    5. [5]

      Wu, W.; Wu, Z.; Lu, T.; Huang, Y. J. Phys. Chem. A 2015, 119, 8216.

    6. [6]

      Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129.

    7. [7]

      Rong, C. Y.; Yu, D. H.; Liu, S. B. Information-Theoretic Approach. In Conceptual Density Functional Theory; Liu, S. B. Ed.; Wiley-VCH: Croydon, UK, 2022; Vol. 1, pp. 281-301.

    8. [8]

    9. [9]

      Cao, J.; Ren, Q.; Chen, F. W. Sci. China Chem. 2015, 58 (12), 1845.

    10. [10]

      Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118 (20), 3698.

    11. [11]

      Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.

    12. [12]

    13. [13]

      Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2004, 109, 205.

    14. [14]

      Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials and Chemical Reactivity. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; John Wiley & Sons: New York, NY, USA, 1991; Vol. 2, pp. 273-312.

    15. [15]

      Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.

    16. [16]

      Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; John Wiley & Sons: West Sussex, England, UK, 1998; Vol. 2, pp. 1792-1811.

    17. [17]

      Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.

    18. [18]

      Dunning, T. H. Jr. J. Chem. Phys. 1989, 90, 1007.

    19. [19]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 03; Gaussian Inc.: Wallingford, CT, USA, 2016.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    8. [8]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    9. [9]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    10. [10]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    14. [14]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    15. [15]

      Junyu Peng Feng Wang Hongmei Yuan Xiaoli Sun . Exploration of the “Sheep-Flock Effect” Teaching Model Based on Dual Preview: Taking Instrumental Analysis Experiment Courses in Local Universities as an Example. University Chemistry, 2025, 40(9): 310-317. doi: 10.12461/PKU.DXHX202412098

    16. [16]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    17. [17]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

Metrics
  • PDF Downloads(0)
  • Abstract views(1777)
  • HTML views(418)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return