Citation:
Jiajie Li, Xiaocong Ma, Jufang Zheng, Qiang Wan, Xiaoshun Zhou, Yahao Wang. Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms[J]. University Chemistry,
;2025, 40(4): 261-276.
doi:
10.12461/PKU.DXHX202406117
-
In recent years, electrocatalytic organic synthesis has attracted increasing attention. Its advantages such as low pollution and high atomic efficiency give it a huge advantage over traditional organic synthesis methods and meet the social requirements of green chemistry. Therefore, detecting the reaction process and key intermediates at the electrode interface from the molecular level has important guiding significance for understanding the reaction mechanism and designing more efficient catalysts. Raman spectroscopy is a type of vibrational spectroscopy that is non-destructive and uninterrupted by water. In particular, surface-enhanced Raman spectroscopy has ultra-high surface sensitivity. It can provide key information on the catalyst surface structure, adsorbed substances and intermediates during the reaction, and provide a reliable platform for exploring the reaction mechanism. This article reviews the recent advances in electrocatalytic organic reaction mechanisms probed by in-situ Raman spectroscopy. Specifically, Raman spectroscopy reveals important intermediates, active substances and reaction pathways in electrocatalytic hydrogenation, activations of C―O, C―X (X = F, Cl, Br, I) and C―H bonds. By analyzing specific cases, it aims to help students understand the research frontiers of organic electrosynthesis and stimulate interest in exploring synthetic electrochemistry, one of IUPAC’s “Top Ten Emerging Technologies in Chemistry” in 2023.
-
-
-
[1]
Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50 (14), 7941.
-
[2]
Francke, R. Curr. Opin. Electrochem. 2022, 36, 101111.
-
[3]
Heo, J.; Ahn, H.; Won, J.; Son, J. G.; Shon, H. K.; Lee, T. G.; Han, S. W.; Baik, M.-H. Science 2020, 370 (6513), 214.
-
[4]
Ma, C.; Fang, P.; Liu, Z.-R.; Xu, S.-S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.-C.; Zeng, C.; Mei, T.-S. Sci. Bull. 2021, 66 (23), 2412.
-
[5]
Wu, X.; Wang, Y.; Wu, Z.-S. Chem 2022, 8 (10), 2594.
-
[6]
Downes, C. A.; Marinescu, S. C. ChemSusChem 2017, 10 (22), 4374.
-
[7]
Chong, X.; Liu, C.; Huang, Y.; Huang, C.; Zhang, B. Natl. Sci. Rev. 2020, 7 (2), 285.
-
[8]
Li, N.; Pan, C.; Lu, G.; Pan, H.; Han, Y.; Wang, K.; Jin, P.; Liu, Q.; Jiang, J. Adv. Mater. 2023, 36 (5), 2311023.
-
[9]
Shi, Z.; Chen, J.; Li, K.; Liu, Y.; Tang, Y.; Zhang, L. Chem. Eng. J. 2023, 461, 141933.
-
[10]
Drasbæk, D. B.; Welander, M. M.; Traulsen, M. L.; Sudireddy, B. R.; Holtappels, P.; Walker, R. A. J. Mater. Chem. A 2022, 10 (10), 5550.
-
[11]
Xue, H.; Yang, T.; Zhang, Z.; Zhang, Y.; Geng, Z.; He, Y. Appl. Catal. B, 2023, 330, 122641.
-
[12]
Pople, J. M. M.; Nicholls, T. P.; Pham, L. N.; Bloch, W. M.; Lisboa, L. S.; Perkins, M. V.; Gibson, C. T.; Coote, M. L.; Jia, Z.; Chalker, J. M. J. Am. Chem. Soc. 2023, 145 (21), 11798.
-
[13]
Zhang, B.; He, J.; Gao, Y.; Levy, L.; Oderinde, M. S.; Palkowitz, M. D.; Dhar, T. G. M.; Mandler, M. D.; Collins, M. R.; Schmitt, D. C.; et al. Nature 2023, 623 (7988), 745.
-
[14]
Wang, Y.; Zhao, R.; Ackermann, L. Adv. Mater. 2023, 35 (49), 2300760.
-
[15]
Gu, Z.; Zhang, Z.; Ni, N.; Hu, C.; Qu, J. Environ. Sci. Technol. 2022, 56 (7), 4356.
-
[16]
Yuan, S.; Xue, Y.; Ma, R.; Ma, Q.; Chen, Y.; Fan, J. Sci. Total Environ. 2023, 866, 161444.
-
[17]
Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S. Environ. Sci. Technol. 2012, 46 (12), 6815.
-
[18]
Li, C.-Y.; Tian, Z.-Q. Chem. Soc. Rev. 2024, 53 (7), 3579.
-
[19]
Hess, C. Chem. Soc. Rev. 2021, 50 (5), 3519.
-
[20]
Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; et al. Nature 2021, 600 (7887), 81.
-
[21]
Wang, Y.-H.; Wei, J.; Radjenovic, P.; Tian, Z.-Q.; Li, J.-F. Anal. Chem. 2019, 91 (3), 1675.
-
[22]
Elliott, A. B. S.; Horvath, R.; Gordon, K. C. Chem. Soc. Rev. 2012, 41 (5), 1929.
-
[23]
Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60 (11), 5708.
-
[24]
Lin, X.-M.; Wang, X.-T.; Deng, Y.-L.; Chen, X.; Chen, H.-N.; Radjenovic, P. M.; Zhang, X.-G.; Wang, Y.-H.; Dong, J.-C.; Tian, Z.-Q.; et al. Nano Lett. 2022, 22 (13), 5544.
-
[25]
-
[26]
Keeler, A. J.; Salazar-Banda, G. R.; Russell, A. E. Curr. Opin. Electrochem. 2019, 17, 90.
-
[27]
Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57 (35), 11257.
-
[28]
Xu, J.; Wang, Z. ChemElectroChem 2023, 10 (19), e202300370.
-
[29]
Li, X.-C.; Wang, B.; Yu, Z.; Wan, Q.; Zheng, J.-F.; Maisonhaute, E.; Zhou, X.-S.; Wang, Y.-H. Sci. China: Chem. 2024, 2224.
-
[30]
Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y. F.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 2016, 55 (8), 2810.
-
[31]
Liu, C.; Tao, H.; Li, J.; Huang, J.; Zhang, Z.; Niu, Y.; Liu, Y.; Lian, C.; Liu, H. Chem. Eng. J. 2024, 287, 119804.
-
[32]
Chong, Y.; Chen, T.; Li, Y.; Lin, J.; Huang, W.-H.; Chen, C.-L.; Jin, X.; Fu, M.; Zhao, Y.; Chen, G. ; et al. Environ. Sci. Technol. 2023, 57 (14), 5831.
-
[33]
Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13 (1), 4602.
-
[34]
Jahromi, A. F.; Ruiz-López, E.; Dorado, F.; Baranova, E. A.; de Lucas-Consuegra, A. Renew. Energ. 2022, 183, 515.
-
[35]
Huang, H.; Yu, C.; Han, X.; Huang, H.; Wei, Q.; Guo, W.; Wang, Z.; Qiu, J. Energy Environ. Sci. 2020, 13 (12), 4990.
-
[36]
Hu, X.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X.; Wang, H. Environ. Chem. Lett. 2023, 21 (5), 2825.
-
[37]
Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723.
-
[38]
Cheng, Z.; Hu, J.; Zhou, W.; Deng, W.; Ma, M.; Tan, Y. J. Mater. Chem. A 2024, 12 (22), 13400.
-
[39]
Wu, J.; Xie, W.; Zhang, Y.; Ke, X.; Li, T.; Fang, H.; Sun, Y.; Zeng, X.; Lin, L.; Tang, X. J. Energy Chem. 2024, 95, 670.
-
[40]
Zhou, Y.; Shen, Y.; Li, H. Appl. Catal. B 2022, 317, 121776.
-
[41]
Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179.
-
[42]
Li, Z.; Huai, L.; Hao, P.; Zhao, X.; Wang, Y.; Zhang, B.; Chen, C.; Zhang, J. Chin. J. Catal. 2022, 43 (3), 793.
-
[43]
Liu, P.; Huai, L.; Zhu, B.; Zhong, Y.; Zhang, J.; Chen, C. Green Chem. 2024, 26 (9), 5377.
-
[44]
Cui, Z.; Dong, X. A.; Cho, S. G.; Tegomoh, M. N.; Dai, W.; Dong, F.; Co, A. C. Nat. Commun. 2022, 13 (1), 5840.
-
[45]
Linnemann, J.; Kanokkanchana, K.; Tschulik, K. ACS Catal. 2021, 11 (9), 5318.
-
[46]
Fang, Z.; Jackson, J. E.; Hegg, E. L. ACS Sustain. Chem. Eng. 2022, 10 (23), 7545.
-
[47]
Peng, T.; Zhuang, T.; Yan, Y.; Qian, J.; Dick, G. R.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; et al. J. Am. Chem. Soc. 2021, 143 (41), 17226.
-
[48]
Zhang, P.; Sheng, X.; Chen, X.; Fang, Z.; Jiang, J.; Wang, M.; Li, F.; Fan, L.; Ren, Y.; Zhang, B.; et al. Angew. Chem. Int. Ed. 2019, 58 (27), 9155.
-
[49]
Kong, A.; Liu, M.; Zhang, H.; Cao, Z.; Zhang, J.; Li, W.; Han, Y.; Fu, Y. Chem. Eng. J. 2022, 445, 136719.
-
[50]
Ma, J.; Wang, Z.; Majima, T.; Zhao, G. ACS Catal. 2022, 12 (22), 14062.
-
[51]
Min, Y.; Mei, S.-C.; Pan, X.-Q.; Chen, J.-J.; Yu, H.-Q.; Xiong, Y. Nat. Commun. 2023, 14 (1), 5134.
-
[52]
Liu, J.; Cai, Z.-Y.; Sun, W.-X.; Wang, J.-Z.; Shen, X.-R.; Zhan, C.; Devasenathipathy, R.; Zhou, J.-Z.; Wu, D.-Y.; Mao, B.-W.; et al. J. Am. Chem. Soc. 2020, 142 (41), 17489.
-
[53]
Zhuo, Q.; Lu, J.; Niu, J.; Crittenden, J. C.; Yu, G.; Wang, S.; Yang, B.; Chen, Z. ACS EST Eng. 2022, 2 (10), 1756.
-
[54]
Wang, A.; Huang, Y.-F.; Sur, U. K.; Wu, D.-Y.; Ren, B.; Rondinini, S.; Amatore, C.; Tian, Z.-Q. J. Am. Chem. Soc. 2010, 132 (28), 9534.
-
[55]
Jiang, C.-C.; Li, X.-C.; Fan, J.-A.; Fu, J.-Y.; Huang-Fu, X.-N.; Li, J.-J.; Zheng, J.-F.; Zhou, X.-S.; Wang, Y.-H. Analyst 2022, 147 (7), 1341.
-
[56]
-
[57]
Massignan, L.; Zhu, C.; Hou, X.; Oliveira, J. C. A.; Salamé, A.; Ackermann, L. ACS Catal. 2021, 11 (18), 11639.
-
[58]
Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8 (8), 7086.
-
[59]
Stevens, M. A.; Colebatch, A. L. Chem. Soc. Rev. 2022, 51 (6), 1881.
-
[60]
Liu, X.; He, X.; Fang, Z.; Gong, S.; Xiong, D.; Chen, W.; Wang, J.; Chen, Z. Chem. Mater. 2024, 36 (2), 968.
-
[61]
Tian, H.; Zhang, Y.; Yu, D.; Yang, X.; Wang, H.; Matindi, C.; Yin, Z.; Hui, H.; Mamba, B. B.; Li, J. Electrochim. Acta 2022, 426, 140796.
-
[62]
Wang, K.; Guo, Z.; Zhou, M.; Yang, Y.; Li, L.; Li, H.; Luque, R.; Saravanamurugan, S. J. Energy Chem. 2024, 91, 542.
-
[63]
Dang, K.; Dong, H.; Wang, L.; Jiang, M.; Jiang, S.; Sun, W.; Wang, D.; Tian, Y. Adv. Mater. 2022, 34 (27), 2200302.
-
[1]
-
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[7]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[8]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[9]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[10]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[11]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[12]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[13]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[14]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[15]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[16]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[17]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[18]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[19]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[20]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[1]
Metrics
- PDF Downloads(8)
- Abstract views(885)
- HTML views(68)