Citation: Jiajie Li,  Xiaocong Ma,  Jufang Zheng,  Qiang Wan,  Xiaoshun Zhou,  Yahao Wang. Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms[J]. University Chemistry, ;2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117 shu

Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms

  • Received Date: 27 June 2024
    Revised Date: 29 August 2024

  • In recent years, electrocatalytic organic synthesis has attracted increasing attention. Its advantages such as low pollution and high atomic efficiency give it a huge advantage over traditional organic synthesis methods and meet the social requirements of green chemistry. Therefore, detecting the reaction process and key intermediates at the electrode interface from the molecular level has important guiding significance for understanding the reaction mechanism and designing more efficient catalysts. Raman spectroscopy is a type of vibrational spectroscopy that is non-destructive and uninterrupted by water. In particular, surface-enhanced Raman spectroscopy has ultra-high surface sensitivity. It can provide key information on the catalyst surface structure, adsorbed substances and intermediates during the reaction, and provide a reliable platform for exploring the reaction mechanism. This article reviews the recent advances in electrocatalytic organic reaction mechanisms probed by in-situ Raman spectroscopy. Specifically, Raman spectroscopy reveals important intermediates, active substances and reaction pathways in electrocatalytic hydrogenation, activations of C―O, C―X (X = F, Cl, Br, I) and C―H bonds. By analyzing specific cases, it aims to help students understand the research frontiers of organic electrosynthesis and stimulate interest in exploring synthetic electrochemistry, one of IUPAC’s “Top Ten Emerging Technologies in Chemistry” in 2023.
  • 加载中
    1. [1]

      Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50 (14), 7941.

    2. [2]

      Francke, R. Curr. Opin. Electrochem. 2022, 36, 101111.

    3. [3]

      Heo, J.; Ahn, H.; Won, J.; Son, J. G.; Shon, H. K.; Lee, T. G.; Han, S. W.; Baik, M.-H. Science 2020, 370 (6513), 214.

    4. [4]

      Ma, C.; Fang, P.; Liu, Z.-R.; Xu, S.-S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.-C.; Zeng, C.; Mei, T.-S. Sci. Bull. 2021, 66 (23), 2412.

    5. [5]

      Wu, X.; Wang, Y.; Wu, Z.-S. Chem 2022, 8 (10), 2594.

    6. [6]

      Downes, C. A.; Marinescu, S. C. ChemSusChem 2017, 10 (22), 4374.

    7. [7]

      Chong, X.; Liu, C.; Huang, Y.; Huang, C.; Zhang, B. Natl. Sci. Rev. 2020, 7 (2), 285.

    8. [8]

      Li, N.; Pan, C.; Lu, G.; Pan, H.; Han, Y.; Wang, K.; Jin, P.; Liu, Q.; Jiang, J. Adv. Mater. 2023, 36 (5), 2311023.

    9. [9]

      Shi, Z.; Chen, J.; Li, K.; Liu, Y.; Tang, Y.; Zhang, L. Chem. Eng. J. 2023, 461, 141933.

    10. [10]

      Drasbæk, D. B.; Welander, M. M.; Traulsen, M. L.; Sudireddy, B. R.; Holtappels, P.; Walker, R. A. J. Mater. Chem. A 2022, 10 (10), 5550.

    11. [11]

      Xue, H.; Yang, T.; Zhang, Z.; Zhang, Y.; Geng, Z.; He, Y. Appl. Catal. B, 2023, 330, 122641.

    12. [12]

      Pople, J. M. M.; Nicholls, T. P.; Pham, L. N.; Bloch, W. M.; Lisboa, L. S.; Perkins, M. V.; Gibson, C. T.; Coote, M. L.; Jia, Z.; Chalker, J. M. J. Am. Chem. Soc. 2023, 145 (21), 11798.

    13. [13]

      Zhang, B.; He, J.; Gao, Y.; Levy, L.; Oderinde, M. S.; Palkowitz, M. D.; Dhar, T. G. M.; Mandler, M. D.; Collins, M. R.; Schmitt, D. C.; et al. Nature 2023, 623 (7988), 745.

    14. [14]

      Wang, Y.; Zhao, R.; Ackermann, L. Adv. Mater. 2023, 35 (49), 2300760.

    15. [15]

      Gu, Z.; Zhang, Z.; Ni, N.; Hu, C.; Qu, J. Environ. Sci. Technol. 2022, 56 (7), 4356.

    16. [16]

      Yuan, S.; Xue, Y.; Ma, R.; Ma, Q.; Chen, Y.; Fan, J. Sci. Total Environ. 2023, 866, 161444.

    17. [17]

      Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S. Environ. Sci. Technol. 2012, 46 (12), 6815.

    18. [18]

      Li, C.-Y.; Tian, Z.-Q. Chem. Soc. Rev. 2024, 53 (7), 3579.

    19. [19]

      Hess, C. Chem. Soc. Rev. 2021, 50 (5), 3519.

    20. [20]

      Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; et al. Nature 2021, 600 (7887), 81.

    21. [21]

      Wang, Y.-H.; Wei, J.; Radjenovic, P.; Tian, Z.-Q.; Li, J.-F. Anal. Chem. 2019, 91 (3), 1675.

    22. [22]

      Elliott, A. B. S.; Horvath, R.; Gordon, K. C. Chem. Soc. Rev. 2012, 41 (5), 1929.

    23. [23]

      Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60 (11), 5708.

    24. [24]

      Lin, X.-M.; Wang, X.-T.; Deng, Y.-L.; Chen, X.; Chen, H.-N.; Radjenovic, P. M.; Zhang, X.-G.; Wang, Y.-H.; Dong, J.-C.; Tian, Z.-Q.; et al. Nano Lett. 2022, 22 (13), 5544.

    25. [25]

    26. [26]

      Keeler, A. J.; Salazar-Banda, G. R.; Russell, A. E. Curr. Opin. Electrochem. 2019, 17, 90.

    27. [27]

      Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57 (35), 11257.

    28. [28]

      Xu, J.; Wang, Z. ChemElectroChem 2023, 10 (19), e202300370.

    29. [29]

      Li, X.-C.; Wang, B.; Yu, Z.; Wan, Q.; Zheng, J.-F.; Maisonhaute, E.; Zhou, X.-S.; Wang, Y.-H. Sci. China: Chem. 2024, 2224.

    30. [30]

      Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y. F.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 2016, 55 (8), 2810.

    31. [31]

      Liu, C.; Tao, H.; Li, J.; Huang, J.; Zhang, Z.; Niu, Y.; Liu, Y.; Lian, C.; Liu, H. Chem. Eng. J. 2024, 287, 119804.

    32. [32]

      Chong, Y.; Chen, T.; Li, Y.; Lin, J.; Huang, W.-H.; Chen, C.-L.; Jin, X.; Fu, M.; Zhao, Y.; Chen, G. ; et al. Environ. Sci. Technol. 2023, 57 (14), 5831.

    33. [33]

      Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13 (1), 4602.

    34. [34]

      Jahromi, A. F.; Ruiz-López, E.; Dorado, F.; Baranova, E. A.; de Lucas-Consuegra, A. Renew. Energ. 2022, 183, 515.

    35. [35]

      Huang, H.; Yu, C.; Han, X.; Huang, H.; Wei, Q.; Guo, W.; Wang, Z.; Qiu, J. Energy Environ. Sci. 2020, 13 (12), 4990.

    36. [36]

      Hu, X.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X.; Wang, H. Environ. Chem. Lett. 2023, 21 (5), 2825.

    37. [37]

      Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723.

    38. [38]

      Cheng, Z.; Hu, J.; Zhou, W.; Deng, W.; Ma, M.; Tan, Y. J. Mater. Chem. A 2024, 12 (22), 13400.

    39. [39]

      Wu, J.; Xie, W.; Zhang, Y.; Ke, X.; Li, T.; Fang, H.; Sun, Y.; Zeng, X.; Lin, L.; Tang, X. J. Energy Chem. 2024, 95, 670.

    40. [40]

      Zhou, Y.; Shen, Y.; Li, H. Appl. Catal. B 2022, 317, 121776.

    41. [41]

      Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179.

    42. [42]

      Li, Z.; Huai, L.; Hao, P.; Zhao, X.; Wang, Y.; Zhang, B.; Chen, C.; Zhang, J. Chin. J. Catal. 2022, 43 (3), 793.

    43. [43]

      Liu, P.; Huai, L.; Zhu, B.; Zhong, Y.; Zhang, J.; Chen, C. Green Chem. 2024, 26 (9), 5377.

    44. [44]

      Cui, Z.; Dong, X. A.; Cho, S. G.; Tegomoh, M. N.; Dai, W.; Dong, F.; Co, A. C. Nat. Commun. 2022, 13 (1), 5840.

    45. [45]

      Linnemann, J.; Kanokkanchana, K.; Tschulik, K. ACS Catal. 2021, 11 (9), 5318.

    46. [46]

      Fang, Z.; Jackson, J. E.; Hegg, E. L. ACS Sustain. Chem. Eng. 2022, 10 (23), 7545.

    47. [47]

      Peng, T.; Zhuang, T.; Yan, Y.; Qian, J.; Dick, G. R.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; et al. J. Am. Chem. Soc. 2021, 143 (41), 17226.

    48. [48]

      Zhang, P.; Sheng, X.; Chen, X.; Fang, Z.; Jiang, J.; Wang, M.; Li, F.; Fan, L.; Ren, Y.; Zhang, B.; et al. Angew. Chem. Int. Ed. 2019, 58 (27), 9155.

    49. [49]

      Kong, A.; Liu, M.; Zhang, H.; Cao, Z.; Zhang, J.; Li, W.; Han, Y.; Fu, Y. Chem. Eng. J. 2022, 445, 136719.

    50. [50]

      Ma, J.; Wang, Z.; Majima, T.; Zhao, G. ACS Catal. 2022, 12 (22), 14062.

    51. [51]

      Min, Y.; Mei, S.-C.; Pan, X.-Q.; Chen, J.-J.; Yu, H.-Q.; Xiong, Y. Nat. Commun. 2023, 14 (1), 5134.

    52. [52]

      Liu, J.; Cai, Z.-Y.; Sun, W.-X.; Wang, J.-Z.; Shen, X.-R.; Zhan, C.; Devasenathipathy, R.; Zhou, J.-Z.; Wu, D.-Y.; Mao, B.-W.; et al. J. Am. Chem. Soc. 2020, 142 (41), 17489.

    53. [53]

      Zhuo, Q.; Lu, J.; Niu, J.; Crittenden, J. C.; Yu, G.; Wang, S.; Yang, B.; Chen, Z. ACS EST Eng. 2022, 2 (10), 1756.

    54. [54]

      Wang, A.; Huang, Y.-F.; Sur, U. K.; Wu, D.-Y.; Ren, B.; Rondinini, S.; Amatore, C.; Tian, Z.-Q. J. Am. Chem. Soc. 2010, 132 (28), 9534.

    55. [55]

      Jiang, C.-C.; Li, X.-C.; Fan, J.-A.; Fu, J.-Y.; Huang-Fu, X.-N.; Li, J.-J.; Zheng, J.-F.; Zhou, X.-S.; Wang, Y.-H. Analyst 2022, 147 (7), 1341.

    56. [56]

    57. [57]

      Massignan, L.; Zhu, C.; Hou, X.; Oliveira, J. C. A.; Salamé, A.; Ackermann, L. ACS Catal. 2021, 11 (18), 11639.

    58. [58]

      Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8 (8), 7086.

    59. [59]

      Stevens, M. A.; Colebatch, A. L. Chem. Soc. Rev. 2022, 51 (6), 1881.

    60. [60]

      Liu, X.; He, X.; Fang, Z.; Gong, S.; Xiong, D.; Chen, W.; Wang, J.; Chen, Z. Chem. Mater. 2024, 36 (2), 968.

    61. [61]

      Tian, H.; Zhang, Y.; Yu, D.; Yang, X.; Wang, H.; Matindi, C.; Yin, Z.; Hui, H.; Mamba, B. B.; Li, J. Electrochim. Acta 2022, 426, 140796.

    62. [62]

      Wang, K.; Guo, Z.; Zhou, M.; Yang, Y.; Li, L.; Li, H.; Luque, R.; Saravanamurugan, S. J. Energy Chem. 2024, 91, 542.

    63. [63]

      Dang, K.; Dong, H.; Wang, L.; Jiang, M.; Jiang, S.; Sun, W.; Wang, D.; Tian, Y. Adv. Mater. 2022, 34 (27), 2200302.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

Metrics
  • PDF Downloads(8)
  • Abstract views(886)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return