Citation: Cen Zhou,  Biqiong Hong,  Yiting Chen. Application of Electrochemical Techniques in Supramolecular Chemistry[J]. University Chemistry, ;2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086 shu

Application of Electrochemical Techniques in Supramolecular Chemistry

  • Corresponding author: Cen Zhou, zhoucen@mju.edu.cn
  • Received Date: 24 June 2024
    Revised Date: 14 September 2024

  • The most frequently used scaffolds in supramolecular chemistry are typically redox active and susceptible to electron transfer. As a basic tool, electrochemical techniques assist in the generation of active species, which leads to altered interactions between molecules. Meanwhile, more information on energy and kinetics that is not available with other characterization techniques can be provided. In this review, the typically examples on applying electrochemical techniques in supramolecular chemistry are briefly summarized.
  • 加载中
    1. [1]

      Lehn, J.-M. Science 1993, 260, 1762.

    2. [2]

      Mahadevi, A. S.; Sastry, G. N. Chem. Rev. 2016, 116, 2775.

    3. [3]

    4. [4]

      Boulas, P. L.; Gómez-Kaifer, M.; Echegoyen, L. Angew. Chem. Int. Ed. 1998, 37, 216.

    5. [5]

    6. [6]

    7. [7]

      Cui, L.; Gadde, S.; Li, W.; Kaifer, A. E. Langmuir 2009, 25, 13763.

    8. [8]

      Ashton, P. R.; Balzani, V.; Becher, J.; Credi A.; Fyfe, M. C. T.; Mattersteig, G.; Menzer, S.; Nielsen, M. B.; Raymo, F. M.; Stoddart, J. F.; et al. J. Am. Chem. Soc. 1999, 121, 3951.

    9. [9]

      Hein, R.; Beer P. D.; Davis, J. J. Chem. Rev. 2020, 120, 1888.

    10. [10]

      Mirzoian, A.; Kaifer, A. E. Chem. Eur. J. 1997, 3, 1052.

    11. [11]

      Spruell, J. M. Pure Appl. Chem. 2010, 82, 2281.

    12. [12]

      Chen, L.; Zhang, Y.-C.; Wang, W.-K.; Tian J.; Zhang, L.; Wang H.; Zhang, D.-W.; Li, Z.-T. Chin. Chem. Lett. 2015, 26, 811.

    13. [13]

      Lee, C.; Moon, M. S.; Park, J. W. J. Inclus. Phenom. 1996, 26, 219.

    14. [14]

      Badjić, J. D.; Nelson. A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723.

    15. [15]

      Jeon, W. S.; Kim, H.-J.; Lee, C.; Kim, K. Chem. Commun. 2002, 1828.

    16. [16]

      Zhou, C.; Tian, J.; Wang, J.-L.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Polym. Chem. 2014, 5, 341.

    17. [17]

      Chiang, P.-T.; Chen, N.-C.; Lai, C.-C.; Chiu, S.-H. Chem. Eur. J. 2008, 14, 6546.

    18. [18]

      Tian, J.; Ding, Y.-D.; Zhou, T.-Y.; Zhang, K.-D.; Zhao, X.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Eur. J. 2014, 20, 575.

    19. [19]

      Tootoonchi, M. H.; Yi, S.; Kaifer, A. E. J. Am. Chem. Soc. 2013, 135, 10804.

    20. [20]

      Potts, K. T.; Keshavarz-K, M.; Tham, F. S.; Abruña, H. D.; Arana, C. R. Inorg. Chem. 1993, 32, 4422.

    21. [21]

      Steuerman, D. W.; Tseng, H.-R.; Peters, A. J.; Flood, A. H.; Jeppesen, J, O.; Nielsen, K. A.; Stoddart, J. F.; Heath, J. R. Angew. Chem. Int. Ed. 2004, 43, 6486.

    22. [22]

      Zhang, K.-D.; Zhao, X.; Wang, G.-T.; Liu, Y.; Zhang, Y.; Lu, H.-J.; Jiang, X.-K.; Li, Z.-T. Angew. Chem. Int. Ed. 2011, 50, 9866.

    23. [23]

      Ellis, T. K.; Galerne, M.; Armao IV, J. J.; Osypenko, A.; Martel, D.; Maaloum, M.; Fuks, G.; Moulin, E.; Gavat, O.; Giuseppone, N. Angew. Chem. Int. Ed. 2018, 57, 15749.

    24. [24]

      Jiao, Y.; Qiu, Y.; Zhang, L.; Liu, W.-G.; Mao, H.; Chen, H.; Feng, Y.; Cai, K.; Shen, D.; Song, B.; et al. Nature 2022, 603, 265.

    25. [25]

      Trabolsi, A.; Khashab, N.; Fahrenbach, A. C.; Friedman, D. C.; Colvin, M. T.; Cotí, K. K.; Benítez, D.; Tkatchouk, E.; Olsen, J.-C.; Belowich, M. E.; et al. Nat. Chem. 2010, 2, 42.

    26. [26]

    27. [27]

      Wang, Y.; Lin, H.-X.; Chen, L.; Ding, S.-Y.; Lei, Z.-C.; Liu, D.-Y.; Cao, X.-Y.; Liang, H.-J.; Jiang, Y.-B.; Tian, Z.-Q. Chem. Soc. Rev. 2014, 43, 399.

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    15. [15]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    16. [16]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    17. [17]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

Metrics
  • PDF Downloads(0)
  • Abstract views(484)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return