Citation: Jingwen Wang,  Minghao Wu,  Xing Zuo,  Yaofeng Yuan,  Yahao Wang,  Xiaoshun Zhou,  Jianfeng Yan. Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions[J]. University Chemistry, ;2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023 shu

Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions

  • Corresponding author: Jianfeng Yan, yanjianfeng@fzu.edu.cn
  • Received Date: 11 June 2024
    Revised Date: 29 August 2024

  • Single-molecule electronics, a pivotal branch of nanotechnology, focuses on the electrical properties of individual molecules, providing a theoretical foundation and technical support for the development of ultra-compact, energy-efficient electronic devices. Achieving precise control over electron transport in single-molecule junctions poses a significant technical challenge in this field. Electrochemical regulation, characterized by its exceptional tunability and reversibility, has emerged as a promising area of research within single-molecule electronics. This review highlights the progress made in the application of electrochemical control strategies over the past decade, encompassing the modulation of electron transport energy levels, molecular valence states, bonding mechanisms between electrodes and molecules, as well as the control of ionic liquid double-layer gating. By analyzing specific case studies, the aim is to enhance students’ understanding of the forefront of single-molecule electronics and its critical importance in contemporary nanoelectronics.
  • 加载中
    1. [1]

      Li, T.; Bandari, V. K.; Hantusch, M.; Xin, J.; Kuhrt, R.; Ravishankar, R.; Xu, L.; Zhang, J.; Knupfer, M.; Zhu, F.; et al. Nat. Commun. 2020, 11 (1), 3592.

    2. [2]

      Arcadia, C. E.; Kennedy, E.; Geiser, J.; Dombroski, A.; Oakley, K.; Chen, S.-L.; Sprague, L.; Ozmen, M.; Sello, J.; Weber, P. M.; et al. Nat. Commun. 2020, 11 (1), 691.

    3. [3]

      Chen, H.; Jia, C.; Zhu, X.; Yang, C.; Guo, X.; Stoddart, J. F. Nat. Rev. Mater. 2023, 8 (3), 165.

    4. [4]

    5. [5]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.;Guo, X. Nat. Rev. Mater. 2019, 1 (3), 211.

    6. [6]

    7. [7]

      Sun, H.; Jiang, Z.; Xin, N.; Guo, X.; Hou, S.; Liao, J. Chem.-Eur. J. 2018, 19 (17), 2258.

    8. [8]

      Yang, C.; Qin, A.; Tang, B. Z.; Guo, X. J. Chem. Phys. 2020, 152 (12).

    9. [9]

      Gao, T.; He, C.; Liu, C.; Fan, Y.; Zhao, C.; Zhao, C.; Su, W.; Dappe, Y. J.; Yang, L. Phys. Chem. Chem. Phys. 2021, 23 (37), 21163.

    10. [10]

      Li, X.-M.; Wang, Y.-H.; Seng, J.-W.; Zheng, J.-F.; Cao, R.; Shao, Y.; Chen, J.-Z.; Li, J.-F.; Zhou, X.-S.; Mao, B.-W. ACS Appl. Mater. Interfaces 2021, 13 (7), 8656.

    11. [11]

      Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Höbenreich, H.; Schiffrin, D. J.; Nichols, R. J. J. Am. Chem. Soc. 2003, 125 (50), 15294.

    12. [12]

    13. [13]

    14. [14]

      Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; et al. Nat. Mater. 2019, 18 (4), 364.

    15. [15]

      Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; et al. J. Am. Chem. Soc. 2018, 140 (50), 17685.

    16. [16]

      Wang, Y. H.; Yan, F.; Li, D. F.; Xi, Y. F.; Cao, R.; Zheng, J. F.; Shao, Y.; Jin, S.; Chen, J. Z.; Zhou, X. S. J. Phys. Chem. Lett. 2021, 12 (2), 758.

    17. [17]

      Wang, Z.; Palma, J. L.; Wang, H.; Liu, J.; Zhou, G.; Ajayakumar, M. R.; Feng, X.; Wang, W.; Ulstrup, J.; Kornyshev, A. A.; et al. Proc. Natl. Acad. Sci. USA 2022, 119 (39), e2122183119.

    18. [18]

      Kuznetsov, A. N.; Schmickler, W. Chem. Phys. 2002, 282 (3), 371.

    19. [19]

      Schmickler, W.; Henderson, D. J. Electroanal. Chem. Interfacial Electrochem. 1990, 290 (1), 283.

    20. [20]

      Baghernejad, M.; Zhao, X.; Baruël Ørnsø, K.; Füeg, M.; Moreno-García, P.; Rudnev, A. V.; Kaliginedi, V.; Vesztergom, S.; Huang, C.; Hong, W.; et al. J. Am. Chem. Soc. 2014, 136 (52), 17922.

    21. [21]

      Xiang, L.; Palma, J. L.; Li, Y.; Mujica, V.; Ratner, M. A.;Tao, N. Nat. Commun. 2017, 8 (1), 14471.

    22. [22]

      Lee, W.; Li, L.; Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Roy, X.; Evers, F.; Inkpen, M. S.;Venkataraman, L. Nat. Commun. 2024, 15 (1), 1439.

    23. [23]

      Li, Y.; Haworth, N. L.; Xiang, L.; Ciampi, S.; Coote, M. L.;Tao, N. J. Am. Chem. Soc. 2017, 139 (41), 14699.

    24. [24]

      Darwish, N.; Díez-Pérez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51 (13), 3203.

    25. [25]

      Yuan, Y.; Yan, J.-F.; Lin, D.-Q.; Mao, B.-W.;Yuan, Y.-F. Chem.-Eur. J. 2018, 24 (14), 3545.

    26. [26]

      Xiao, X.; Brune, D.; He, J.; Lindsay, S.; Gorman, C. B.;Tao, N. Chem. Phys. 2006, 326 (1), 138.

    27. [27]

      Li, Y.; Wang, H.; Wang, Z.; Qiao, Y.; Ulstrup, J.; Chen, H.-Y.; Zhou, G.;Tao, N. Proc. Natl. Acad. Sci. USA 2019, 116 (9), 3407.

    28. [28]

      O'Driscoll, L. J.; Hamill, J. M.; Grace, I.; Nielsen, B. W.; Almutib, E.; Fu, Y.; Hong, W.; Lambert, C. J.; Jeppesen, J. O. Chem. Sci. 2017, 8 (9), 6123.

    29. [29]

      Tang, A.; Li, Y.; Wang, R.; Yang, J.; Ma, C.; Li, Z.; Zou, Q.; Li, H. Chem. Commun. 2023, 59 (10), 1305.

    30. [30]

      Hines, T.; Díez-Pérez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. Am. Chem. Soc. 2013, 135 (9), 3319.

    31. [31]

      Doud, E. A.; Inkpen, M. S.; Lovat, G.; Montes, E.; Paley, D. W.; Steigerwald, M. L.; Vázquez, H.; Venkataraman, L.; Roy, X. J. Am. Chem. Soc. 2018, 140 (28), 8944.

    32. [32]

      Zang, Y.; Pinkard, A.; Liu, Z.-F.; Neaton, J. B.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. J. Am. Chem. Soc. 2017, 139 (42), 14845.

    33. [33]

      Huang, M.; Zhou, Q.; Liang, F.; Yu, L.; Xiao, B.; Li, Y.; Zhang, M.; Chen, Y.; He, J.; Xiao, S.; et al. Nano Lett. 2021, 21 (12), 5409.

    34. [34]

      Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M.; Wang, S.; Zhang, G.; Yang, J.; Guo, X. Angew. Chem. Int. Ed. 2018, 57 (43), 14026.

    35. [35]

      Yan, Z.; Li, X.; Li, Y.; Jia, C.; Xin, N.; Li, P.; Meng, L.; Zhang, M.; Chen, L.; Yang, J.; et al. Sci. Adv. 2022, 8 (12), eabm3541.

    36. [36]

      Xin, N.; Hu, C.; Al Sabea, H.; Zhang, M.; Zhou, C.; Meng, L.; Jia, C.; Gong, Y.; Li, Y.; Ke, G.; et al. J. Am. Chem. Soc. 2021, 143 (49), 20811.

    37. [37]

      Zhang, L.; Yang, C.; Lu, C.; Li, X.; Guo, Y.; Zhang, J.; Lin, J.; Li, Z.; Jia, C.; Yang, J.; et al. Nat. Commun. 2022, 13 (1), 4552.

  • 加载中
    1. [1]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    12. [12]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(0)
  • Abstract views(487)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return