Citation: Zhongyan Cao,  Shengnan Jin,  Yuxia Wang,  Yiyi Chen,  Xianqiang Kong,  Yuanqing Xu. Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors[J]. University Chemistry, ;2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186 shu

Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors

  • Received Date: 9 May 2024
    Revised Date: 1 August 2024

  • Phenols, produced at an annual volume exceeding ten million tons, are widely used in various key organic transformations due to their low cost. In introductory chemistry courses, the reactions of phenols typically involve substitutions at the electron-rich aromatic ring or the hydroxyl oxygen, leaving the inert C―O bond intact in the final products. To expand the utility of phenols, researchers have developed metal-catalyzed strategies that cleave the C―O bond by introducing activating groups at the oxygen atom, enabling efficient deoxygenative coupling reactions. However, these methods often require harsh conditions and may result in metal contamination, limiting their use in pharmaceutical and other sensitive applications. To address these limitations, recent studies have demonstrated that simple phenol derivatives can selectively cleave the inert C―O bond under mild conditions, using light or electricity to generate aryl radicals. The high reactivity and selectivity of these radicals enable novel and efficient chemical transformations, offering new strategies for the application of phenols in organic synthesis. This paper reviews recent advancements in using trifluoromethanesulfonates, phosphates, and carbonates of phenols as aryl radical precursors, discussing the challenges and breakthroughs in constructing complex molecules with high precision. This review aims to broaden the knowledge of advanced students in the field.
  • 加载中
    1. [1]

      Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110 (6), 3552.

    2. [2]

      Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijin, S. F.; Beckham, G. T.; Sels, B. F. Chem. Soc. Rev. 2018, 47, 852.

    3. [3]

    4. [4]

      Zeng, H.; Qiu, Z.; Domínguez-Huerta, A.; Hearne, Z.; Chen, Z.; Li, C.-J. ACS Catal. 2017, 7 (1), 510.

    5. [5]

      Qiu, Z.; Li, C.-J. Chem. Rev. 2020, 120 (18), 10454.

    6. [6]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113 (7), 5322.

    7. [7]

      Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116 (17), 9850.

    8. [8]

      Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116 (17), 10075.

    9. [9]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117 (21), 13230.

    10. [10]

      Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.

    11. [11]

      Ma, C.; Fang, P.; Liu, Z.; Xu, S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.; Zeng, C. C.; Mei, T.-S. Sci. Bull. 2021, 66 (23), 2412.

    12. [12]

      Cheng, X.; Lei, A. W.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4 (4), 1120.

    13. [13]

      Kavsovs, N.; Gevorgyan, V. Chem. Soc. Rev. 2021, 50, 2244.

    14. [14]

      Kong, X.; Chen, Y.; Chen, X.; Ma, C.; Chen, M.; Wang, W.; Xu, Y.-Q.; Ni, S.-F.; Cao, Z.-Y. Nat. Commun. 2023, 14, 6933.

    15. [15]

      Jutand, A.; Negri, S.; Mosleh, A. J. Chem. Soc. Chem. Commun. 1992, 1729.

    16. [16]

      Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. J. Am. Chem. Soc. 2017, 139 (25), 8621.

    17. [17]

      Dou, Q.; Geng, L.; Cheng, B.; Li, C.-J.; Zeng, H. Chem. Commun. 2021, 57, 8429.

    18. [18]

      Yan, B.; Zhou, Y.; Wu. J.; Ran, M.; Li, H.; Yao, Q. Org. Chem. Front. 2021, 8, 5244.

    19. [19]

      Wang, S.; Wang, H.; König, B. Chem 2021, 7, 1653.

    20. [20]

      Ratushnyy, M.; Kvasovs, N.; Sarkar, S.; Gevorgyan, V. Angew. Chem. Int. Ed. 2020, 59 (26), 10316.

    21. [21]

      Jin, S.; Dang, H. T.; Haug, G. C.; He, H. R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. J. Am. Chem. Soc. 2020, 142 (3), 1603.

  • 加载中
    1. [1]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    14. [14]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    15. [15]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    16. [16]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    17. [17]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

Metrics
  • PDF Downloads(2)
  • Abstract views(853)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return