Citation: Zhongyan Cao,  Shengnan Jin,  Yuxia Wang,  Yiyi Chen,  Xianqiang Kong,  Yuanqing Xu. Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors[J]. University Chemistry, ;2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186 shu

Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors

  • Received Date: 9 May 2024
    Revised Date: 1 August 2024

  • Phenols, produced at an annual volume exceeding ten million tons, are widely used in various key organic transformations due to their low cost. In introductory chemistry courses, the reactions of phenols typically involve substitutions at the electron-rich aromatic ring or the hydroxyl oxygen, leaving the inert C―O bond intact in the final products. To expand the utility of phenols, researchers have developed metal-catalyzed strategies that cleave the C―O bond by introducing activating groups at the oxygen atom, enabling efficient deoxygenative coupling reactions. However, these methods often require harsh conditions and may result in metal contamination, limiting their use in pharmaceutical and other sensitive applications. To address these limitations, recent studies have demonstrated that simple phenol derivatives can selectively cleave the inert C―O bond under mild conditions, using light or electricity to generate aryl radicals. The high reactivity and selectivity of these radicals enable novel and efficient chemical transformations, offering new strategies for the application of phenols in organic synthesis. This paper reviews recent advancements in using trifluoromethanesulfonates, phosphates, and carbonates of phenols as aryl radical precursors, discussing the challenges and breakthroughs in constructing complex molecules with high precision. This review aims to broaden the knowledge of advanced students in the field.
  • 加载中
    1. [1]

      Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110 (6), 3552.

    2. [2]

      Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijin, S. F.; Beckham, G. T.; Sels, B. F. Chem. Soc. Rev. 2018, 47, 852.

    3. [3]

    4. [4]

      Zeng, H.; Qiu, Z.; Domínguez-Huerta, A.; Hearne, Z.; Chen, Z.; Li, C.-J. ACS Catal. 2017, 7 (1), 510.

    5. [5]

      Qiu, Z.; Li, C.-J. Chem. Rev. 2020, 120 (18), 10454.

    6. [6]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113 (7), 5322.

    7. [7]

      Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116 (17), 9850.

    8. [8]

      Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116 (17), 10075.

    9. [9]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117 (21), 13230.

    10. [10]

      Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.

    11. [11]

      Ma, C.; Fang, P.; Liu, Z.; Xu, S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.; Zeng, C. C.; Mei, T.-S. Sci. Bull. 2021, 66 (23), 2412.

    12. [12]

      Cheng, X.; Lei, A. W.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4 (4), 1120.

    13. [13]

      Kavsovs, N.; Gevorgyan, V. Chem. Soc. Rev. 2021, 50, 2244.

    14. [14]

      Kong, X.; Chen, Y.; Chen, X.; Ma, C.; Chen, M.; Wang, W.; Xu, Y.-Q.; Ni, S.-F.; Cao, Z.-Y. Nat. Commun. 2023, 14, 6933.

    15. [15]

      Jutand, A.; Negri, S.; Mosleh, A. J. Chem. Soc. Chem. Commun. 1992, 1729.

    16. [16]

      Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. J. Am. Chem. Soc. 2017, 139 (25), 8621.

    17. [17]

      Dou, Q.; Geng, L.; Cheng, B.; Li, C.-J.; Zeng, H. Chem. Commun. 2021, 57, 8429.

    18. [18]

      Yan, B.; Zhou, Y.; Wu. J.; Ran, M.; Li, H.; Yao, Q. Org. Chem. Front. 2021, 8, 5244.

    19. [19]

      Wang, S.; Wang, H.; König, B. Chem 2021, 7, 1653.

    20. [20]

      Ratushnyy, M.; Kvasovs, N.; Sarkar, S.; Gevorgyan, V. Angew. Chem. Int. Ed. 2020, 59 (26), 10316.

    21. [21]

      Jin, S.; Dang, H. T.; Haug, G. C.; He, H. R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. J. Am. Chem. Soc. 2020, 142 (3), 1603.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(98)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return