Citation:
Pingping Zhang, Dong Xiao, Shiyu Zhou, Chuanqiu Tang. Research and Innovative Practice on the Reform of Instrument Analysis Experimental Teaching System for Talent Cultivation in Modern Industry[J]. University Chemistry,
;2025, 40(4): 232-238.
doi:
10.12461/PKU.DXHX202405179
-
The traditional instrument analysis experimental teaching system has primarily focused on classic cases, lacking exploration of cutting-edge fields and emerging technologies. Furthermore, it fails to closely align with the needs of industry, resulting in a disconnect between students and actual engineering. This gap hinders students' comprehensive development and does not meet the innovation needs of enterprises. It is urgent to update and expand the teaching system to better align with the evolving demands of the times and the requirements for industrial talent cultivation. To address the need for high-quality composite industrial talents, the course team has followed the guiding ideology of the national modern industrial college construction. By closely aligning with regional industrial characteristics, the original experimental teaching system has been restructured and sequenced under the guidance of “one fundamental core” and “three ability cultivations”. This has led to the formation of an operable, “four integrations and four stages” hierarchical, progressive teaching system, aiming to achieve deeper integration between curriculum and industry, and fostering application-oriented innovative talents capable of adapting to and leading the progress of modern industry.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[1]
-
-
-
[1]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[2]
Haibo Zhang , Yuwen Liu , Qiong Ding , Chi Huang , Faqiong Zhao , Jinping Zhou . The Construction of National Demonstration Center for Experimental Chemistry Education and the Practice of Top-Notch Innovative Talent Cultivation. University Chemistry, 2024, 39(7): 82-92. doi: 10.12461/PKU.DXHX202405012
-
[3]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[4]
Linlin Guo , Jinjun Zhang , Chengpeng Miao , Bojing Liu , Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001
-
[5]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[6]
Wanqun Hu , Pingping Zhu , Yuan Zheng , Wanqun Zhang , Wei Shao , Hong Wu , Qiang Zhou , Kaiping Yang , Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062
-
[7]
Rong Lai , Jie Li , Xianfang Xu , Shui Hu , Tao Chen , Houjin Li , Guping Hu , Hongyan Chen , Fang Zhu . Taking the Overall Relocation as an Opportunity to Accelerate the Development of Chemical Experimental Teaching Centers: A Case Study of the National Demonstration Center for Experimental Chemistry Education at Sun Yat-Sen University. University Chemistry, 2024, 39(4): 33-39. doi: 10.3866/PKU.DXHX202310115
-
[8]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[9]
Zhaoyang Li , Haiyan Zhao , Yali Zhang , Yuan Zhang , Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131
-
[10]
Xiaofei Zhou , Yu-Qing Cao , Feng Zhu , Li Qi , Linhai Liu , Ni Yan , Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058
-
[11]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
-
[12]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068
-
[13]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[14]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[15]
Yifeng Xu , Zeying Wu , Guiqin Shang , Linlin Ding , Fuyan Liu , Huan Zhang , Fuhua Jiang . Teaching Reform and Practice of Instrumental Analysis and Experiment Course under the Background of Deep Integration of Industry and Education. University Chemistry, 2025, 40(3): 285-290. doi: 10.12461/PKU.DXHX202408084
-
[16]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[17]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[18]
Yan Li , Fei Ding , Jing Wang , Jing Nan , Yijun Li , Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097
-
[19]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[20]
Dongxue Han , Zhuoyong Li , Hanbo Zou , Xu Wu , Yang Yuan , Hongbin Li . Research on Innovative Experimental Teaching to Cultivate Top Talents. University Chemistry, 2024, 39(7): 230-236. doi: 10.12461/PKU.DXHX202406094
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(50)
- HTML views(7)