Citation: Qiuting Zhang,  Fan Wu,  Jin Liu,  Zian Lin. Chromatographic Stationary Phase and Chiral Separation Using Frame Materials[J]. University Chemistry, ;2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174 shu

Chromatographic Stationary Phase and Chiral Separation Using Frame Materials

  • Received Date: 27 May 2024
    Revised Date: 22 July 2024

  • Chirality plays an important role in fields such as biology, pharmacology and chemical reactions. In practical applications, only one specific configuration of chiral materials typically exhibits the desired effects, making chiral separation essential. The framework materials, with their diverse structures and ease of modification, are highly effective as chromatographic stationary phases for the efficient separation of chiral substances. This paper reviews the latest research on framework material stationary phases for chiral separations and discusses the challenges and application prospects of framework material stationary phases.
  • 加载中
    1. [1]

      Rikken, G. L.; Raupach, E. Nature 2000, 405, 932.

    2. [2]

      Sun, Z. F.; Hou, J. J.; Li, L. S.; Tang, Z. Y. Coord. Chem. Rev. 2020, 425, 213481.

    3. [3]

      Crosby, J. Tetrahedron 1991, 22.

    4. [4]

    5. [5]

      Sui, J.; Wang, N.; Wang, J.; Huang, X.; Wang, T.; Zhou, L.; Hao, H. Chem. Sci. 2023, 14, 11955.

    6. [6]

      Zhong, H.; Deng, J. Polym. Rev. 2022, 62, 826.

    7. [7]

      Li, X. F.; Zhu, Q. L. EnergyChem 2020, 2.

    8. [8]

      Mínguez, E. G.; Coronado, E. Chem. Soc. Rev. 2018, 47, 533.

    9. [9]

      Krause, S.; Bon, V.; Senkovska, I.; Stoeck, U.; Wallacher, D.; Többens, D. M.; Zander, S.; Pillai, R. S.; Maurin, G.; Coudert, F.-X.; et al. Nature 2016, 532, 348.

    10. [10]

      Zhou, W. X.; Tang, Y. J.; Zhang, X. Y.; Zhang, S. T.; Xue, H. G.; Pang, H. Coord. Chem. Rev. 2023, 477, 214949.

    11. [11]

      Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279.

    12. [12]

      Corella-Ochoa, M. N.; Tapia, J. B.; Rubin, H. N.; Lillo, V.; González-Cobos, J.; Núñez-Rico, J. L.; Balestra, S. R. G.; Almora-Barrios, N.; Lledós, M.; Güell-Bara, A.; et al. J. Am. Chem. Soc. 2019, 141, 14306.

    13. [13]

      Jiang, H.; Yang, K. W.; Zhao, X. X.; Zhang, W. Q.; Liu, Y.; Jiang, J. W.; Cui, Y. J. Am. Chem. Soc. 2021, 143, 390.

    14. [14]

      Yu, Y. Y.; Xu, N. Y.; Zhang, J. H.; Wang, B. J.; Xie, S. M.; Yuan, L. M. ACS Appl. Mater. Interfaces 2020, 12, 16903.

    15. [15]

      Ma, X.; Guo, Y.; Zhang, L.; Wang, K. X.; Yu, A. J.; Zhang, S. S.; Ouyang, G. F. Talanta 2022, 239, 123143.

    16. [16]

      Kou, W. T.; Yang, C. X.; Yan, X. P. J. Mater. Chem. A 2018, 6, 17861.

    17. [17]

      Fei, Z. X.; Zhang, M.; Zhang, J. H.; Yuan, L. M. Anal. Chim. Acta 2014, 830, 49.

    18. [18]

      Li, Z. T.; Mao, Z. K.; Zhou, W.; Chen, Z. L. Talanta 2020, 218, 121160.

    19. [19]

      Suttipat, D.; Butcha, S.; Assavapanumat, S.; Maihom, T.; Gupta, B.; Perro, A.; Sojic, N.; Kuhn, A.; Wattanakit, C. ACS Appl. Mater. Interfaces 2020, 12, 36548.

    20. [20]

      Sun, X. D.; Niu, B.; Zhang, Q.; Chen, Q. J. Pharm. Anal. 2022, 12, 509.

    21. [21]

      Xu, H.; Chen, X.; Gao, J.; Lin, J. B.; Addicoat, M.; Irle, S.; Jiang, D. L. Chem. Commun. 2014, 50, 1292.

    22. [22]

      Han, X.; Huang, J. J.; Yuan, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 892.

    23. [23]

      Zhang, S. N.; Zheng, Y. L.; An, H. D.; Aguila, B.; Yang, C. X.; Dong, Y. Y.; Xie, W.; Cheng, P.; Zhang, Z. J.; Chen, Y.; et al. Angew. Chem., Int. Ed. 2018, 57, 16754.

    24. [24]

      Xu, N. Y.; Guo, P.; Chen, J. K.; Zhang, J. H.; Wang, B. J.; Xie, S. M.; Yuan, L. M. Talanta 2021, 235, 122754.

    25. [25]

      Wan, M. J.; Zheng, Y. C.; Dai, X. M.; Yang, H. L.; Zhou, J. Q.; Ou, J.; Yang, Y. X.; Liao, M. F.; Xia, Z. N.; Wang, L. J. Chem. Mater. 2023, 35, 609.

    26. [26]

      Chen, Y. L.; Huang, S. M.; Xia, L.; Hu, Y. L.; Li, G. K. Anal. Chem. 2024, 96, 1380.

    27. [27]

      Tang, B.; Wang, W.; Hou, H. P.; Liu, Y. Q.; Liu, Z. K.; Geng, L. N.; Sun, L. Q.; Luo, A. Q. Chin. Chem. Lett. 2022, 33, 898.

    28. [28]

      Yuan, C.; Jia, W. Y.; Yu, Z. Y.; Li, Y. N.; Zi, M.; Yuan, L. M.; Cui, Y. J. Am. Chem. Soc. 2022, 144, 891.

    29. [29]

      Yuan, C.; Wang, Z.; Xiong, W. Q.; Huang, Z. F.; Lai, Y. L.; Fu, S. G.; Dong, J. Q.; Duan, A. H.; Hou, X. D.; Yuan, L. M.; et al. J. Am. Chem. Soc. 2023, 145, 18956.

    30. [30]

      Song, Q. Y.; Yang, J.; Zheng, K. N.; Zhang, T.; Yuan, C.; Yuan, L. M.; Hou, X. D. J. Am. Chem. Soc. 2024, 146, 7594.

    31. [31]

      Wang, Y. Y.; Zhuo, S. Q.; Hou, J. W.; Li, W.; Ji, Y. B. ACS Appl. Mater. Interfaces 2019, 11, 48363.

    32. [32]

      Wang, W.; Zhang, Y. K.; Tang, B.; Hou, H. P.; Tang, S. S.; Luo, A. Q. J. Chromatogr. A 2022, 1675.

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    4. [4]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    9. [9]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    15. [15]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(0)
  • Abstract views(744)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return