Citation: Xingyuan Lu,  Yutao Yao,  Junjing Gu,  Peifeng Su. Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters[J]. University Chemistry, ;2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074 shu

Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters

  • Corresponding author: Peifeng Su, supi@xmu.edu.cn
  • Received Date: 7 May 2024
    Revised Date: 14 August 2024

  • Energy decomposition analysis (EDA) is a quantitative theoretical method for studying molecular interactions. It has been widely applied in various fields including molecule self-assembly, drug design, mechanism of chemical reactions, and development of force fields. The existing undergraduate chemistry curriculum, however, often provides superficial explanations of molecular interactions, sometimes with inconsistencies. To deepen undergraduates’ understanding of molecular interactions, this article briefly outlines the basic concepts of EDA and introduces the representative GKS-EDA method, along with its study of multi-body effects in hexamer water systems.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Pearson, R. G. Chem. Rev. 1985, 85 (1), 41.

    4. [4]

      Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100 (11), 4253.

    5. [5]

      Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101 (7), 1963.

    6. [6]

      Belkova, N. V.; Epstein. L. M.; Filippov, O. A.; Shubina, E. S. Chem. Rev. 2016, 116 (15), 8545.

    7. [7]

      Mahmudov, K T.; Pombeiro, A. J. L. Chem-Eur. J. 2016, 22 (46), 16356.

    8. [8]

      Weinhold; Frank; Roger A. K. Angew. Chem. Int. Ed. 2014, 53 (42), 11214.

    9. [9]

      Stone, A. The Theory of Intermolecular Forces; Oxford University Press: Oxford, UK, 2013.

    10. [10]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94 (7), 1887.

    11. [11]

      Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; Wiley: San Francisco, CA, USA, 2000; pp. 1-86.

    12. [12]

      Hohenstein, E. G.; Sherrill, C. D. Wires Comput. Mol. Sci. 2012, 2 (2), 304.

    13. [13]

      Szalewicz, K. Wires Comput. Mol. Sci. 2012, 2 (2), 254.

    14. [14]

      Jansen, G. Wires Comput. Mol. Sci. 2014, 4 (2), 127.

    15. [15]

      Phipps, M. J.; Fox, T.; Tautermann, C. S.; Skylaris, C-K. Chem. Soc. Rev. 2015, 44 (10), 3177.

    16. [16]

      Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Wires Comput. Chem. Rev. 2018, 8 (3), e1345.

    17. [17]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Chem. Rev. 2020, 10 (5), e1460.

    18. [18]

      Kitaura, K.; Morokuma. K. Int. J. Quantum Chem. 1976, 10, 325.

    19. [19]

      Stevens, W. J.; Fink. W. H. Chem. Phys. Lett. 1987, 139 (1), 15.

    20. [20]

      Chen, W.; Gordon, M. S. J. Phys. Chem. 1996, 100 (34), 14316.

    21. [21]

      Bagus, P. S.; Hermann, K.; Bauschlicher Jr., C. W. J. Chem. Phys. 1984, 80 (9), 4378.

    22. [22]

      Bagus, P. S.; Illas, F. J. Chem. Phys. 1992, 96 (12), 8963.

    23. [23]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112 (13), 5530.

    24. [24]

      Mo, Y.; Bao. P.; Gao. J. Phys. Chem. Chem. Phys. 2011, 13 (15), 6760.

    25. [25]

      Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. A. 2007, 111 (36), 8753.

    26. [26]

      Mao, Y.; Horn, P. R.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2017, 19 (8), 5944.

    27. [27]

      Su, P.; Li, H. J. Chem. Phys. 2009, 131 (1), 014102.

    28. [28]

      Szalewicz, K.; Jeziorski, B. Mol. Phys. 1979, 38, 191.

    29. [29]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887.

    30. [30]

      Nahoko, K.; Yuji, M.; Hirotoshi, M. J. Chem. Educ. 2023, 100 (2), 647.

    31. [31]

      Su, P.; Jiang, Z.; Chen, Z.; Wu, W. J. Phys. Chem. A. 2014, 118 (13), 2531.

    32. [32]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Mol. Sci. 2020, 10, e1460.

    33. [33]

      Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys. 1970, 53 (12), 4544.

    34. [34]

      Morokuma, K.; Pedersen, L. J. Chem. Phys. 1968, 48 (7), 3275.

    35. [35]

      Xantheas, S. S. J. Chem. Phys. 1994, 100 (10), 7523.

    36. [36]

      Medders, G. R.; Götz, A. W.; Morales, M. A.; Bajaj, P.; Paesani, F. J. Chem. Phys. 2015, 143 (10), 104102.

    37. [37]

      Dahlke, E. E; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (1), 46.

    38. [38]

      Gregory, J. K.; Clary, D. C. J. Phys. Chem. 1996, 100 (46), 18014.

    39. [39]

      Milet, A.; Moszynski, R.; Wormer, P. E.; van der Avoird, A. J. Phys. Chem. A 1999, 103 (34), 6811.

    40. [40]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    41. [41]

      Herman, K. M.; Xantheas, S. S. Phys. Chem. Chem. Phys. 2023, 25 (10), 7120.

    42. [42]

      Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (4), 1342.

    43. [43]

      Heindel, J. P.; Herman, K. M.; Xantheas, S. S. Annu. Rev. Phys. Chem. 2023, 74, 337.

    44. [44]

      Heindel, J. P.; Xantheas, S. S. J. Chem. Theory Comput. 2020, 16 (11), 6843.

    45. [45]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    46. [46]

      Nandi, A.; Qu, C.; Houston, P. L.; Conte, R.; Yu, Q.; Bowman, J. M. J. Phys. Chem. Lett. 2021, 12 (42), 10318.

    47. [47]

      Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46 (7), 618.

    48. [48]

      Dunning Jr, T. H. J. Chem. Phys. 1989, 90 (2), 1007.

    49. [49]

      Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (8), 084106.

    50. [50]

      Iuchi, S.; Izvekov, S.; Voth, G. A. J. Chem. Phys. 2007, 126 (12), 124505.

  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    5. [5]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    11. [11]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    17. [17]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return