Citation: Xingyuan Lu,  Yutao Yao,  Junjing Gu,  Peifeng Su. Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters[J]. University Chemistry, ;2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074 shu

Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters

  • Corresponding author: Peifeng Su, supi@xmu.edu.cn
  • Received Date: 7 May 2024
    Revised Date: 14 August 2024

  • Energy decomposition analysis (EDA) is a quantitative theoretical method for studying molecular interactions. It has been widely applied in various fields including molecule self-assembly, drug design, mechanism of chemical reactions, and development of force fields. The existing undergraduate chemistry curriculum, however, often provides superficial explanations of molecular interactions, sometimes with inconsistencies. To deepen undergraduates’ understanding of molecular interactions, this article briefly outlines the basic concepts of EDA and introduces the representative GKS-EDA method, along with its study of multi-body effects in hexamer water systems.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Pearson, R. G. Chem. Rev. 1985, 85 (1), 41.

    4. [4]

      Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100 (11), 4253.

    5. [5]

      Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101 (7), 1963.

    6. [6]

      Belkova, N. V.; Epstein. L. M.; Filippov, O. A.; Shubina, E. S. Chem. Rev. 2016, 116 (15), 8545.

    7. [7]

      Mahmudov, K T.; Pombeiro, A. J. L. Chem-Eur. J. 2016, 22 (46), 16356.

    8. [8]

      Weinhold; Frank; Roger A. K. Angew. Chem. Int. Ed. 2014, 53 (42), 11214.

    9. [9]

      Stone, A. The Theory of Intermolecular Forces; Oxford University Press: Oxford, UK, 2013.

    10. [10]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94 (7), 1887.

    11. [11]

      Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; Wiley: San Francisco, CA, USA, 2000; pp. 1-86.

    12. [12]

      Hohenstein, E. G.; Sherrill, C. D. Wires Comput. Mol. Sci. 2012, 2 (2), 304.

    13. [13]

      Szalewicz, K. Wires Comput. Mol. Sci. 2012, 2 (2), 254.

    14. [14]

      Jansen, G. Wires Comput. Mol. Sci. 2014, 4 (2), 127.

    15. [15]

      Phipps, M. J.; Fox, T.; Tautermann, C. S.; Skylaris, C-K. Chem. Soc. Rev. 2015, 44 (10), 3177.

    16. [16]

      Zhao, L.; von Hopffgarten, M.; Andrada, D. M.; Frenking, G. Wires Comput. Chem. Rev. 2018, 8 (3), e1345.

    17. [17]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Chem. Rev. 2020, 10 (5), e1460.

    18. [18]

      Kitaura, K.; Morokuma. K. Int. J. Quantum Chem. 1976, 10, 325.

    19. [19]

      Stevens, W. J.; Fink. W. H. Chem. Phys. Lett. 1987, 139 (1), 15.

    20. [20]

      Chen, W.; Gordon, M. S. J. Phys. Chem. 1996, 100 (34), 14316.

    21. [21]

      Bagus, P. S.; Hermann, K.; Bauschlicher Jr., C. W. J. Chem. Phys. 1984, 80 (9), 4378.

    22. [22]

      Bagus, P. S.; Illas, F. J. Chem. Phys. 1992, 96 (12), 8963.

    23. [23]

      Mo, Y.; Gao, J.; Peyerimhoff, S. D. J. Chem. Phys. 2000, 112 (13), 5530.

    24. [24]

      Mo, Y.; Bao. P.; Gao. J. Phys. Chem. Chem. Phys. 2011, 13 (15), 6760.

    25. [25]

      Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. A. 2007, 111 (36), 8753.

    26. [26]

      Mao, Y.; Horn, P. R.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2017, 19 (8), 5944.

    27. [27]

      Su, P.; Li, H. J. Chem. Phys. 2009, 131 (1), 014102.

    28. [28]

      Szalewicz, K.; Jeziorski, B. Mol. Phys. 1979, 38, 191.

    29. [29]

      Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887.

    30. [30]

      Nahoko, K.; Yuji, M.; Hirotoshi, M. J. Chem. Educ. 2023, 100 (2), 647.

    31. [31]

      Su, P.; Jiang, Z.; Chen, Z.; Wu, W. J. Phys. Chem. A. 2014, 118 (13), 2531.

    32. [32]

      Su, P.; Tang, Z.; Wu, W. Wires Comput. Mol. Sci. 2020, 10, e1460.

    33. [33]

      Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys. 1970, 53 (12), 4544.

    34. [34]

      Morokuma, K.; Pedersen, L. J. Chem. Phys. 1968, 48 (7), 3275.

    35. [35]

      Xantheas, S. S. J. Chem. Phys. 1994, 100 (10), 7523.

    36. [36]

      Medders, G. R.; Götz, A. W.; Morales, M. A.; Bajaj, P.; Paesani, F. J. Chem. Phys. 2015, 143 (10), 104102.

    37. [37]

      Dahlke, E. E; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (1), 46.

    38. [38]

      Gregory, J. K.; Clary, D. C. J. Phys. Chem. 1996, 100 (46), 18014.

    39. [39]

      Milet, A.; Moszynski, R.; Wormer, P. E.; van der Avoird, A. J. Phys. Chem. A 1999, 103 (34), 6811.

    40. [40]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    41. [41]

      Herman, K. M.; Xantheas, S. S. Phys. Chem. Chem. Phys. 2023, 25 (10), 7120.

    42. [42]

      Dahlke, E. E.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3 (4), 1342.

    43. [43]

      Heindel, J. P.; Herman, K. M.; Xantheas, S. S. Annu. Rev. Phys. Chem. 2023, 74, 337.

    44. [44]

      Heindel, J. P.; Xantheas, S. S. J. Chem. Theory Comput. 2020, 16 (11), 6843.

    45. [45]

      Schmitt-Monreal, D.; Jacob, C. R. J. Chem. Theory Comput. 2021, 17 (7), 4144.

    46. [46]

      Nandi, A.; Qu, C.; Houston, P. L.; Conte, R.; Yu, Q.; Bowman, J. M. J. Phys. Chem. Lett. 2021, 12 (42), 10318.

    47. [47]

      Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46 (7), 618.

    48. [48]

      Dunning Jr, T. H. J. Chem. Phys. 1989, 90 (2), 1007.

    49. [49]

      Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (8), 084106.

    50. [50]

      Iuchi, S.; Izvekov, S.; Voth, G. A. J. Chem. Phys. 2007, 126 (12), 124505.

  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    3. [3]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    4. [4]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    7. [7]

      Junyu Peng Feng Wang Hongmei Yuan Xiaoli Sun . Exploration of the “Sheep-Flock Effect” Teaching Model Based on Dual Preview: Taking Instrumental Analysis Experiment Courses in Local Universities as an Example. University Chemistry, 2025, 40(9): 310-317. doi: 10.12461/PKU.DXHX202412098

    8. [8]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    9. [9]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Weiwei Zhang Yongxin Ren Hong Zhang Ke Lu . Current Situation and Quality Improvement Measures of Undergraduate Education in Modern Analytical Testing Technology under the “Learning, Teaching, and Practicing” Trinity Concept. University Chemistry, 2025, 40(10): 78-85. doi: 10.12461/PKU.DXHX202412006

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(0)
  • Abstract views(763)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return