Citation: Danqing Wu,  Jiajun Liu,  Tianyu Li,  Dazhen Xu,  Zhiwei Miao. Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways[J]. University Chemistry, ;2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087 shu

Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways

  • Received Date: 23 March 2024
    Revised Date: 21 May 2024

  • The 1,2-difunctionalization of olefins via radical pathways is a crucial method in organic synthesis for the direct formation of C—X (X = C, N, O, etc.) bonds from olefins. This approach offers several advantages, including high regioselectivity, step economy, and atom economy, making it compatible with the principles of green chemistry. The development of simple and efficient methods for constructing carbon-oxygen bonds is a significant area of interest in organic chemistry due to the prevalence of organic functional compounds containing these bonds. This review summarizes the recent progress in constructing carbon-oxygen bonds concurrently with carbon-carbon, carbon-nitrogen, carbon-sulfur, and carbon-halogen bonds. Additionally, the article discusses the future directions for research in this field.
  • 加载中
    1. [1]

      Huang, H. M.; Xie, Y. J.; Hu, J. H.; Xie, P.; Qian, B. J. Am. Chem. Soc. 2013, 135, 18327.

    2. [2]

      Dagousset, G.; Barthelemy, A. L.; Tuccio, B.; Magnier, E. Angew. Chem. Int. Ed. 2018, 57, 13790.

    3. [3]

      Shi, X. D.; Zhang, S. Y.; Wang, C. H.; Ye, X. H. Angew. Chem. Int. Ed. 2020, 59, 20470.

    4. [4]

      Shenvi, R. A.; Crossley, S. W. M.; Obradors, C.; Martinez, R. M. Chem. Rev. 2016, 116, 8912.

    5. [5]

      Zhu, S. Q.; Tu, H. Y.; Qing, F. L.; Chu, L. L. Synthesis 2020, 52, 1346.

    6. [6]

      Hemric, B. N. Org. Biomol. Chem. 2021, 19, 46.

    7. [7]

      Vessally, E.; Ebadi, A.; Hossaini, Z.; Heravi, M. R. P.; Azizi, B. RSC Adv. 2021, 11, 13138.

    8. [8]

      Sodeoka, M.; Egami, H. Angew. Chem. Int. Ed. 2014, 53, 8294.

    9. [9]

      Sigman, M. S.; Jensen, K. H. Org. Biomol. Chem. 2008, 6, 4083.

    10. [10]

      Chen, Q. Y.; Guo, Y.; Zhao, Z. G.; Li, L.; Huang, M. W.; Liu, C.; Xiao, J. C. Org. Lett. 2015, 17, 4714.

    11. [11]

      Muñiz, K. Chem. Soc. Rev. 2004, 33, 166.

    12. [12]

      Sigman, M. S.; Jensen, K. H. Org. Biomol. Chem. 2008, 6, 4083.

    13. [13]

      Lei, A. W.; Huang, Z. L.; Jin, L. Q.; Feng, Y.; Peng, Pan.; Yi. H. Angew. Chem. Int. Ed. 2013, 52, 7151.

    14. [14]

      Li, J. H.; Song, L. J.; Jiang, S. S.; Gu, C. C.; Li, Y.; Dong, Y. X. Org. Lett. 2018, 20, 7594.

    15. [15]

      Mandal, S. K.; Swain, A. K.; Ahmed, J.; Govindarajan, R. J. Org. Chem. 2019, 84, 13490.

    16. [16]

      Li, S. H.; Li, Q. K.; Huang, R.; Meng, B. Y.; Peng, D. Q.; Wang, S. H.; Liu, S. H.; Fan, W. ACS. Catal. 2020, 10, 4012.

    17. [17]

      Jin, C.; Yu, C. M.; Yan, Z. Y.; Huang, P. Y.; Shi, X. Y.; Zhuang, X. H.; Zhu, R.; Sun, B. Org. Lett. 2021, 23, 617.

    18. [18]

      Chemler, S. R.; Kim, J. W.; Fuller, P. H. J. Am. Chem. Soc. 2008, 130, 17638.

    19. [19]

      Zhang, W. B.; Yang, G. Q.; Zhang, X. H.; Wu, L.; Li, Y.; Kou, X. Z. Org. Lett. 2015, 17, 5566.

    20. [20]

      Wang, Q.; Chen, A. W.; Hemric, B. N. ACS Catal. 2019, 9, 10070.

    21. [21]

      Huang, J. M.; Wan, J. L. Org. Lett. 2022, 24, 8914.

    22. [22]

      Han, J. L.; Wang, Y.; Deng, L. L.; Mei, H. B.; Du, B. N.; Pan, Y. Green Chem. 2018, 20, 3444.

    23. [23]

      Sun, J. W.; Ma, D. K.; Yan, J. Y.; Zhang, Z. F. Chin. Chem. Lett. 2019, 30, 1509.

    24. [24]

      Gao, B.; Liu, X. J.; Yan, Q.; Yang, R. T.; Jiang, T.; Zhang, X. L. Synthesis 2022, 54, 2258.

    25. [25]

      Liu, C. J.; Xia, Y.; Jin, W. W.; Zhang, Y. H.; Wang, B.; Liu, T. X.; Xue, F.; Chen, Z. R. Green Chem. 2022, 24, 3250.

    26. [26]

      Majee, A.; Zyryanov, G. V.; Hajra, A.; Kundu, S. K.; Santra, S.; Chakraborty, N. RSC Adv. 2015, 5, 56780.

    27. [27]

      Li, J. H.; Song, R. J.; Wan, C. Org. Lett. 2019, 21, 2800.

    28. [28]

      Li, J. H.; Song, R. J.; Zhang, T. T.; Luo, M. J.; Li, Y. Org. Lett. 2020, 22, 7250.

    29. [29]

      Li, H. L.; Li, Z.Q.; Zhai, L. L.; Fang, B. W. Tetrahedron Letters. 2023, 126, 154647.

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    18. [18]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    19. [19]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    20. [20]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

Metrics
  • PDF Downloads(21)
  • Abstract views(1110)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return