Citation: Chengyi Xiao,  Xiaoli Sun,  Chen Zhang,  Weiwei Li. An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics[J]. University Chemistry, ;2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069 shu

An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics

  • Received Date: 23 March 2024
    Revised Date: 20 May 2024

  • The concept of free volume originated from the study of liquid viscosity and was later utilized by Fox and Flory in the analysis of the glass transition in polymer materials, establishing itself as a crucial tool for understanding various physical phenomena in polymers. However, there is currently a lack of comprehensive discussion on free volume in educational contexts. This paper provides an overview of the origin, definition, and applications of free volume, explores different testing methods, and investigates the relationship between free volume and the physical properties of polymers. The study aims to deepen students’ understanding of the free volume concept, promote a comprehensive grasp of polymer physical processes, and inspire interest and enthusiasm for scientific research.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Eyring, H.; Hirschfelder, J. J. Phys. Chem. 1937, 41 (2), 249.

    4. [4]

      Bondi, A. J. Phys. Chem. 1954, 58 (11), 929.

    5. [5]

      Fox, T. G., Jr.; Flory, P. J. J. Appl. Phys. 1950, 21 (6), 581.

    6. [6]

      Swapna, V. P.; Abhisha, V. S.; Stephen, R. Polymer/Polyhedral Oligomeric Silsesquioxane Nanocomposite Membranes for Pervaporation. In Polymer Nanocomposite Membranes for Pervaporation, 1st ed.; Thomas, S., George, S. C., Jose, T., Eds. Elsevier: Amsterdam, The Netherlands, 2020; pp. 201–229.

    7. [7]

      Fox, T. G.; Flory, P. J. J. Polym. Sci. 1954, 14 (75), 315.

    8. [8]

      Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77 (14), 3701.

    9. [9]

      Ren, Y.-K.; Li, Y.-T.; Li, L.-B. Chin. J. Polym. Sci. 2017, 35 (11), 1415.

    10. [10]

      Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31 (5), 1164.

    11. [11]

      White, R. P.; Lipson, J. E. G. Macromolecules 2016, 49 (11), 3987.

    12. [12]

      Spaepen, F. Defects in Amorphous Metals. In Les Houches Lectures XXXV on Physics of Defects, 1st ed.; Balian, R., Kléman, M., Poirier, J.-P., Eds. North Holland Press: Amsterdam, The Netherlands, 1981; pp. 133–174.

    13. [13]

      Yasuda, H.; Ikenberry, L. D.; Lamaze, C. E. Makromol. Chem. 1969, 125 (1), 108.

    14. [14]

      Hirai, N.; Eyring, H. J. Polym. Sci. 1959, 37 (131), 51.

    15. [15]

      Simha, R.; Boyer, R. F. J. Chem. Phys. 1962, 37 (5), 1003.

    16. [16]

      Miller, A. A. J. Polym. Sci. Part A-2: Polym. Phys. 1966, 4 (3), 415.

    17. [17]

      Cohen, M. H.; Grest, G. S. Phys. Rev. B 1979, 20 (3), 1077.

    18. [18]

      Kilburn, D.; Dlubek, G.; Pionteck, J.; Alam, M. A. Polymer 2006, 47 (22), 7774.

    19. [19]

      Orwoll, R. J. Densities, Coefficients of Thermal Expansion, and Compressibilities of Amorphous Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Mark, J. E., Eds. Springer: Heidelberg, Germany, 2007; pp. 93–217.

    20. [20]

    21. [21]

      Banlusan, K.; Strachan, A. J. Chem. Phys. 2017, 146 (18), 184705.

    22. [22]

      Pal, S.; Reddy, K. V.; Yu, T.; Xiao, J.; Deng, C. J. Mater. Sci. 2021, 56 (19), 11511.

    23. [23]

      Banlusan, K.; Amornkitbamrung, V. J. Phys. Chem. C 2020, 124 (31), 17027.

    24. [24]

      Simha, R.; Somcynsky, T. Macromolecules 1969, 2 (4), 342.

    25. [25]

      Simha, R.; Carri, G. J. Polym. Sci. Part B: Polym. Phys. 1994, 32 (16), 2645.

    26. [26]

    27. [27]

      McDermott, A. G.; Budd, P. M.; McKeown, N. B.; Colina, C. M.; Runt, J. J. Mater. Chem. A 2014, 2 (30), 11742.

    28. [28]

      Asano, A.; Takegoshi, K. J. Chem. Phys. 2001, 115 (18), 8665.

    29. [29]

      Golemme, G.; Nagy, J. B.; Fonseca, A.; Algieri, C.; Yampolskii, Y. Polymer 2003, 44 (17), 5039.

    30. [30]

      Eldrup, M.; Lightbody, D.; Sherwood, J. N. Chem. Phys. 1981, 63 (1), 51.

    31. [31]

      Zhang, H. J.; Sellaiyan, S.; Kakizaki, T.; Uedono, A.; Taniguchi, Y.; Hayashi, K. Macromolecules 2017, 50 (10), 3933.

    32. [32]

    33. [33]

    34. [34]

      Milina, M.; Mitchell, S.; Crivelli, P.; Cooke, D.; Pérez-Ramírez, J. Nat. Commun. 2014, 5 (1), 3922.

    35. [35]

      Fica-Contreras, S. M.; Hoffman, D. J.; Pan, J.; Liang, C.; Fayer, M. D. J. Am. Chem. Soc. 2021, 143 (9), 3583.

    36. [36]

      Curro, J. G.; Lagasse, R. R.; Simha, R. Macromolecules 1982, 15 (6), 1621.

    37. [37]

      McCaig, M.; Paul, D. R. Polymer 2000, 41 (2), 629.

    38. [38]

      Lee, W. M. Polym. Eng. Sci. 1980, 20 (1), 65.

    39. [39]

      Adam, G., Gibbs, J. H. J. Chem. Phys. 2004, 43 (1), 139.

    40. [40]

    41. [41]

    42. [42]

      Doolittle, A. K. J. Appl. Phys. 1951, 22 (12), 1471.

    43. [43]

      Vogel, H. Phys. Z 1921, 22 (1), 645.

    44. [44]

      Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8 (6), 339.

    45. [45]

      Tammann, G.; Hesse, W. Z. Anorg. Allg. Chem. 1926, 156 (4), 245.

    46. [46]

      Allal, A.; Boned, C.; Baylaucq, A. Phys. Rev. E 2001, 64 (1), 011203.

    47. [47]

      Simha, R.; Boyer, R. F. J. Chem. Phys. 2004, 37 (5), 1003.

    48. [48]

      Dlubek, G.; Saarinen, K.; Fretwell, H. M. J. Polym. Sci. Part B: Polym. Phys. 1998, 36 (9), 1513.

    49. [49]

      Williams, M. L. J. Appl. Phys. 1958, 29 (10), 1395.

    50. [50]

      Kruse, J.; Kanzow, J.; Rätzke, K.; Faupel, F.; Heuchel, M.; Frahn, J.; Hofmann, D. Macromolecules 2005, 38 (23), 9638.

    51. [51]

      Miller, A. A. J. Polym. Sci., Part A: Gen. Pap. 1964, 2 (3), 1095.

    52. [52]

      Liu, X.; Wu, H.; Xu, W.; Jiang, Y.; Zhang, J.; Ye, B.; Zhang, H.; Chen, S.; Miao, M.; Zhang, D. Adv. Mater. 2024, 36 (9), 2308434.

    53. [53]

    54. [54]

      Godwin, A. D. Plasticizers. In Applied Plastics Engineering Handbook: Processing and Materials, 1st ed.; Kutz, M., Eds. William Andrew Publishing: Oxford, UK, 2011; pp. 487–501.

    55. [55]

      Langer, E.; Bortel, K.; Waskiewicz, S.; Lenartowicz-Klik, M. Assessment of Traditional Plasticizers. In Plasticizers Derived from Post-Consumer PET, 1st ed.; Payne, E., Adamson, P., Eds. William Andrew Publishing: Oxford, UK, 2020; pp. 1–11.

  • 加载中
    1. [1]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    2. [2]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    3. [3]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    4. [4]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    5. [5]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    8. [8]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    11. [11]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    12. [12]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    13. [13]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    14. [14]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    15. [15]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    16. [16]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    19. [19]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    20. [20]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

Metrics
  • PDF Downloads(0)
  • Abstract views(55)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return