Citation: CHANG Fengxia, SHANG Zongyi, DONG Qing, LONG Zhiyan, DENG Yixue. Simultaneous Determination of Catechol and Hydroquinone by Copper Oxide Nanoparticles and Carbon Nanotubes Modified Glassy Carbon Electrode[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1195-1202. doi: 10.11944/j.issn.1000-0518.2020.10.200048 shu

Simultaneous Determination of Catechol and Hydroquinone by Copper Oxide Nanoparticles and Carbon Nanotubes Modified Glassy Carbon Electrode

  • Corresponding author: CHANG Fengxia, changfengxia@swun.edu.cn
  • Received Date: 21 February 2020
    Revised Date: 18 March 2020
    Accepted Date: 9 May 2020

    Fund Project: Southwest Minzu University Fundamental Research Funds for the Central Universities 2020NQN07Supported by Southwest Minzu University Fundamental Research Funds for the Central Universities(No.2020NQN07)

Figures(6)

  • Copper oxide nanoparticles and carboxylated multi-walled carbon nanotubes were used as modification materials for glassy carbon electrodes in this study. This nanocomposite combined the advantages of electrochemical signal amplification and electrocatalysis, and the as-prepared modified electrode could separate the redox peaks of catechol and hydroquinone and enlarge the peak currents further. Thus, this electrochemical sensor based on copper oxide nanoparticles and carbon nanotubes can be used for the simultaneous determination of catechol and hydroquinone. The ratio of copper oxide nanoparticles and carbon nanotubes in the nanocomposite, the cast volume and pH of the electrolyte are optimized via cyclic voltammetry. The optimal mass ratio between copper oxide nanoparticles and carbon nanotubes is 5:1. The optimal cast volume is 9 μL and phosphate buffer solution with pH=7.4 is used as the electrolyte. At the optimized conditions, the peak currents obtained with differential pulse voltammetric determination show good linear relationships with concentrations of catechol and hydroquinone in the range from 6.0×10-7~3.0×10-3 mol/L with detection limits of 1.0×10-7 mol/L and 1.60×10-7 mol/L (S/N=3), resepectively. This method is cheap, easy to operate and fast, and the recovery rates of practical water samples using this method are in a satisfactory range (94.6%~101.1%). Therefore, this proposed method has a good prospect of practical application.
  • 加载中
    1. [1]

      Wang H F, Wu Y Y, Yan X P. Room-Temperature Phosphorescent Discrimination of Catechol from Resorcinol and Hydroquinone Based on Sodium Tripolyphosphate Capped Mn-Doped ZnS Quantum Dots[J]. Anal Chem, 2013,85(3):1920-1925.  

    2. [2]

      Chen T T, Xu J Q, Arsalan M. Controlled Synthesis of Au@Pd Core-Shell Nanocomposites and their Application for Electrochemical Sensing of Hydroquinone[J]. Talanta, 2019,198:78-85.  

    3. [3]

      Huang D L, Wang J, Cheng F. Synergistic Effect of a Cobalt Fluoroporphyrin and Graphene Oxide on the Simultaneous Voltammetric Determination of Catechol and Hydroquinone[J]. Microchim Acta, 2019,186(6):1-11.  

    4. [4]

      Marrubini G, Calleri E, Coccini T. Direct Analysis of Phenol, Catechol and Hydroquinone in Human Urine by Coupled-Column HPLC with Fluorimetric Detection[J]. Chromatographia, 2005,62(1/2):25-31.  

    5. [5]

      Xie T Y, Liu Q W, Shi Y R. Simultaneous Determination of Positional Isomers of Benzenediols by Capillary Zone Electrophoresis with Square Wave Amperometric detection[J]. J Chromatogr A, 2006,1109(2):317-321.  

    6. [6]

      Liu J, Lin Z. Simultaneous Determination of Mixed Phenol, Catechol, and Quinol by Double Fourier Transform Filtering and Second Ratio Spectra Derivative Spectrophotometry[J]. Spectrosc Spectr Anal, 2000,20(4):480-483.  

    7. [7]

      Cui H, Zhang Q L, Myint A. Chemiluminescence of Cerium(IV)-Rhodamine 6G-Phenolic Compound System[J]. J Photochem Photobiol A, 2006,181(2/3):238-245.  

    8. [8]

      Chen T W, Yu X N, Li S J. Simultaneous Determination of Dihydroxybenzene Isomers Using Glass Carbon Electrode Modified with 3D CNT-Graphene Decorated with Au Nanoparticles[J]. Int J Electrochem Sc, 2019,14(8):7037-7046.  

    9. [9]

      Yang S Y, Yang M, Liu Q Y. An Ultrasensitive Electrochemical Sensor Based on Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon Composite for Simultaneous Determination of Hydroquinone, Catechol and Resorcinol[J]. J Electrochem Soc, 2019,166(6):B547-B553.  

    10. [10]

      Zhao C, Song J F, Zhang J C. Determination of Total Phenols in Environmental Wastewater by Flow-Injection Analysis with a Biamperometric Detector[J]. Anal Bioanal Chem, 2002,374(3):498-504.  

    11. [11]

      WANG Zhongteng, LIU Hanhan, TENG Hui. A Voltammetric Sensor Based on Graphene-Gold Nanocomposite Film for Simultaneous Determination of Hydroquinone and Catechol[J]. J Anhui Sci Tech Univ, 2018,32(5):64-72.  

    12. [12]

      FU Ju, TAN Xiaohong, SONG Xinjian. Polypyrimidine/Graphene Composite Film Modified Electrode for the Simultaneous Detection of Catechol and Hydroquinone[J]. J Hubei Univ Nationnalities(Nat Sci Edn), 2016,34(2):195-198.  

    13. [13]

      Zhao L, Yu J, Yue S Z. Nickel Oxide/Carbon Nanotube Nanocomposites Prepared by Atomic Layer Deposition for Electrochemical Sensing of Hydroquinone and Catechol[J]. J Electroanal Chem, 2018,808:245-251.  

    14. [14]

      Alshahrani L A, Miao L Q, Zhang Y Y. 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Coexisting Hydroquinone and Catechol[J]. Sensors, 2019,19(10):1-12.  

    15. [15]

      Bozkurt G, Bayrakceken A, Ozer A K. Synthesis and Characterization of CuO at Nanoscale[J]. Appl Surf Sci, 2014,318:244-250.  

    16. [16]

      Khanna P K, Gaikwad S, Adhyapak R. Synthesis and Characterization of Copper Nanoparticles[J]. Mater Lett, 2007,61(25):4711-4714.  

    17. [17]

      Teng F, Yao W Q, Zheng Y F. Synthesis of Flower-like CuO Nanostructures as a Sensitive Sensor for Catalysis[J]. Sens Actuators B, 2008,134(2):761-768.  

    18. [18]

      Patil S A, Patil L A, Patil D R. CuO-Modified Tin Titanate Thick Film Resistors as H2-Gas Sensors[J]. Sens Actuators B, 2007,123(1):233-239.  

    19. [19]

      Xiang J Y, Tu J P, Huang X H. A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium Ion Batteries[J]. J Solid State Electrochem, 2008,12(7/8):941-945.  

    20. [20]

      Alizadeh T, Mirzagholipur S. A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles-Graphene Nanocomposite[J]. Sens Actuators B, 2014,198:438-447.  

    21. [21]

      Wang H, Xu J Z, Zhu J J. Preparation of CuO Nanoparticles by Microwave Irradiation[J]. J Cryst Growth, 2002,244(1):88-94.  

    22. [22]

      Suzuki K, Tanaka N, Ando A. Size-Selected Copper Oxide Nanoparticles Synthesized by Laser Ablation[J]. J Nanopart Res, 2012,14(5):1-11.  

    23. [23]

      Kumar R V, Diamant Y, Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates[J]. Chem Mater, 2000,12(8):2301-2305.  

    24. [24]

      Zhu J W, Li D, Chen H Q. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-Precipitation Method[J]. Mater Lett, 2004,58(26):3324-3327.  

    25. [25]

      Arvand M, Ardaki M S, Zanjanchi M A. A New Sensing Platform Based on Electrospun Copper Oxide/Ionic Liquid Nanocomposite for Selective Determination of Risperidone[J]. RSC Adv, 2015,5(51):40578-40587.  

    26. [26]

      LUO Yunfeng, LIU Baoshuang, LI Chunxiang. All Solid-State Calcium Ion Selective Electrode Based on Carbon Nanotube/Ag/MoS2 Transducer[J]. Chinese J Appl Chem, 2019,36(6):704-710.  

    27. [27]

      XU Siyuan, LEI Ping, JIN Guanping. Determination of Pb(Ⅱ), Cd(Ⅱ) with Melamine Chelating Resin/Multi-walled Carbon Nanotubes Composites Modified Waxed Graphite Electrode[J]. Chinese J Appl Chem, 2014,31(2):206-211.  

    28. [28]

      YU Hao, ZHENG Xiaochen, LIU Rantong. Preparation of Copper-iron Hexacyanoferrate Loaded Multi-walled Carbon Nanotubes Modified Electrode for the Determination of Nitrite[J]. Chinese J Appl Chem, 2014,31(11):1336-1344.  

    29. [29]

      MENG Kuikui, CUO Jialing, YUN Yangfang. Simultaneous Sensitive Determination of Catechol and Hydroquinone at Gold Nanoparticles Modified Glassy Carbon Electrode[J]. Chem Res Appl, 2018,30(3):432-436.  

    30. [30]

      Zhang H Q, Huang Y H, Hu S R. Self-assembly of Graphitic Carbon Nitride Nanosheets-Carbon Nanotube Composite for Electrochemical Simultaneous Determination of Catechol and Hydroquinone[J]. Electrochim Acta, 2015,176:28-35.  

    31. [31]

      Hu F X, Chen S H, Wang C Y. Study on the Application of Reduced Graphene Oxide and Multiwall Carbon Nanotubes Hybrid Materials for Simultaneous Determination of Catechol, Hydroquinone, p-Cresol and Nitrite[J]. Anal Chim Acta, 2012,724:40-46.  

    32. [32]

      Goulart L A, Goncalves R, Correa A A. Synergic Effect of Silver Nanoparticles and Carbon Nanotubes on the Simultaneous Voltammetric Determination of Hydroquinone, Catechol, Bisphenol A and Phenol[J]. Microchim Acta, 2017,185(1):1-9.  

    33. [33]

      WAN Qijin, LIAO Hualing, LIU Yi. Simultaneous Determination of Catechol and Hydroquinpne in Graphene Modified Electrode[J]. J Wuhan Inst Tech, 2013,35(2):16-23.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    9. [9]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    10. [10]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    15. [15]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(3)
  • Abstract views(1364)
  • HTML views(431)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return