Citation: DUAN Jinchi, QI Yunxia, SHI Chengying, ZHAO Qi, LIU Baijun, SUN Zhaoyan, XU Yiquan, HU Wei, ZHANG Niaona. Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 896-903. doi: 10.11944/j.issn.1000-0518.2020.08.200050 shu

Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites

  • Corresponding author: HU Wei, huw884@nenu.edu.cn ZHANG Niaona, zhangniaona@163.com
  • Received Date: 24 February 2020
    Revised Date: 20 March 2020
    Accepted Date: 21 April 2020

    Fund Project: Supported by National Natural Science Foundation of China(No.21404013, No.5187306); Science and Technology Development Plan of Jilin Province, China(No.20200401036GX), "13th Five Year Plan" Science and Technology Project of Jilin Provincial Department of Education, China(No.JJKH20191297KJ), Changchun New Area "Changbai Huigu" Talent Project(No.9-2020004)"13th Five Year Plan" Science and Technology Project of Jilin Provincial Department of Education, China JJKH20191297KJChangchun New Area "Changbai Huigu" Talent Project 9-2020004Science and Technology Development Plan of Jilin Province, China 20200401036GXNational Natural Science Foundation of China 21404013National Natural Science Foundation of China 5187306

Figures(6)

  • In this study, the composites (PE-Al-Si) with high thermal conductivity and mechanical properties were obtained by compounding low density polyethylene (LDPE), alumina (Al2O3) and SiO2 nanoparticles through melt blending, and then further modification through electron beam radiation. When the mass fraction of SiO2 nanoparticles is 1% and the electron beam radiation (EB) dose is 120 kGy, the thermal conductivity of PE-Al-Si increases from 0.624 W/(m·K) to 0.759 W/(m·K), which is 22% increase compared with the composites without SiO2 (PE-Al). The tensile strength of PE-Al-Si is increased by 17% compared with that of PE-Al. The results prove that SiO2 improves the mechanical properties, the radiation efficiency and the thermal conductivity of the composites.
  • 加载中
    1. [1]

      Anithambigai P, Shanmugan S, Mutharasu D. Study on Thermal Performance of High Power LED Employing Aluminum Filled Epoxy Composite as Thermal Interface Material[J]. Microelectron J, 2014,45(12):1726-1733. doi: 10.1016/j.mejo.2014.05.011

    2. [2]

      Henry A, Chen G. Anomalous Heat Conduction in Polyethylene Chains:Theory and Molecular Dynamics Simulations[J]. Phys Rev B, 2009,79(14)144305. doi: 10.1103/PhysRevB.79.144305

    3. [3]

      Fan J, Xu S. Aluminum Oxide Particles/Silicon Carbide Whiskers' Synergistic Effect on Thermal Conductivity of High-Density Polyethylene Composites[J]. Iran Polym J, 2018,27(5):339-347. doi: 10.1007/s13726-018-0614-9

    4. [4]

      Ouyang Y, Hou G, Bai L. Constructing Continuous Networks by Branched Alumina for Enhanced Thermal Conductivity of Polymer Composites[J]. Compos Sci Technol, 2018,165:307-313. doi: 10.1016/j.compscitech.2018.07.019

    5. [5]

      Evgin T, Koca H D, Horny N. Effect of Aspect Ratio on Thermal Conductivity of High Density Polyethylene/Multi-Walled Carbon Nanotubes Nanocomposites[J]. Compos Part A:Appl Sci Manuf, 2016,82:208-213. doi: 10.1016/j.compositesa.2015.12.013

    6. [6]

      Pedrazzoli D, Pegoretti A, Thomann R. Toughening Linear Low-Density Polyethylene with Halloysite Nanotubes[J]. Polym Composit, 2015,36(5):869-883. doi: 10.1002/pc.23006

    7. [7]

      Zhang Y, Yu J, Zhou C. Preparation, Morphology, and Adhesive and Mechanical Properties of Ultrahigh-Molecular-Weight Polyethylene/SiO2 Nanocomposite Fibers[J]. Polym Compos, 2010,31(4):684-690.  

    8. [8]

      Sahyoun J, Crepet A, Gouanve F. Diffusion Mechanism of Byproducts Resulting from the Peroxide Crosslinking of Polyethylene[J]. J Appl Polym Sci, 2017,134(9).  

    9. [9]

      Liu D, Pourrahimi A M, Pallon L K H. Interactions Between a Phenolic Antioxidant, Moisture, Peroxide and Crosslinking By-Products with Metal Oxide Nanoparticles in Branched Polyethylene[J]. Polym Degrad Stab, 2016,125:21-32. doi: 10.1016/j.polymdegradstab.2015.12.014

    10. [10]

      Kabanov V, Feldman V, Ershov B. Radiation Chemistry of Polymers[J]. High Energy Chem, 2009,43(1):1-18. doi: 10.1134/S0018143909010019

    11. [11]

      Kolanthai E, Bose S, Bhagyashree K S. Graphene Scavenges Free Radicals to Synergistically Enhance Structural Properties in a Gamma-Irradiated Polyethylene Composite Through Enhanced Interfacial Interactions[J]. Phys Chem Chem Phys, 2015,17(35):22900-22910. doi: 10.1039/C5CP02609A

    12. [12]

      Chen P Y, Chen C C, Harmon J P. The Effect of Gamma Radiation on Hardness Evolution in High Density Polyethylene at Elevated Temperatures[J]. Mater Chem Phys, 2014,146(3):369-373.  

    13. [13]

      Chen Y, Yue W, Bian Z. Preparation and Properties of KH550-Al2O3/PI-EP Nanocomposite Material[J]. Iran Polym J, 2013,22(5):377-383. doi: 10.1007/s13726-013-0137-3

    14. [14]

      Anithambigai P, Chakravarthii M K D, Mutharasu D. Potential Thermally Conductive Alumina Filled Epoxy Composite for Thermal Management of High Power LEDs[J]. J Mater Sci:Mater Electron, 2017,28(1):856-867. doi: 10.1007/s10854-016-5600-4

    15. [15]

      Narkis M, Raiter I, Shkolnik S. Structure and Tensile Behavior of Irradiation-and Peroxide-Crosslinked Polyethylenes[J]. J Macromol Sci Phys, 1987,26(1):37-58. doi: 10.1080/00222348708248057

    16. [16]

      Stephen H. Electrical Properties of Composites in the Vicinity of the Percolation Threshold[J]. J Appl Polym Sci, 1999,72(12):1573-1582. doi: 10.1002/(SICI)1097-4628(19990620)72:12<1573::AID-APP10>3.0.CO;2-6

    17. [17]

      Lai S K. Interface Trap Generation in Silicon Dioxide When Electrons are Captured by Trapped Holes[J]. J Appl Phys, ,54(5):2540-2546. doi: 10.1063/1.332323

    18. [18]

      DiMaria D J. Correlation of Trap Creation with Electron Heating in Silicon Dioxide[J]. Appl Phys Lett, 1987,51(9):655-657. doi: 10.1063/1.98324

    19. [19]

      Zhang J, Li C, Yu C. Large Improvement of Thermal Transport and Mechanical Performance of Polyvinyl Alcohol Composites Based on Interface Enhanced by SiO2 Nanoparticle-Modified-Hexagonal Boron Nitride[J]. Compos Sci Technol, 2019,169:167-175. doi: 10.1016/j.compscitech.2018.11.001

    20. [20]

      Kochetov R, Andritsch T, Lafont U. Thermal Conductivity of Nano-Filled Epoxy Systems[J]. Conference on Electrical Insulation and Dielectric Phenomena, 2009:658-661.  

    21. [21]

      Stelescu M D, Manaila E, Craciun G. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation[J]. Sci World J, 2014,2014:1-13.  

    22. [22]

      Sener A A, Demirhan E. The Investigation of Using Magnesium Hydroxide as a Flame Retardant in the Cable Insulation Material by Cross-Linked Polyethylene[J]. Mater Des, 2008,29(7):1376-1379. doi: 10.1016/j.matdes.2007.05.008

    23. [23]

      Mishra A K, Luyt A S. Effect of Sol-Gel Derived Nano-Silica and Organic Peroxide on the Thermal and Mechanical Properties of Low-Density Polyethylene/Wood Flour Composites[J]. Polym Degrad Stab, 2008,93(1):1-8. doi: 10.1016/j.polymdegradstab.2007.11.006

    24. [24]

      Bikiaris D N, Vassiliou A, Pavlidou E. Compatibilisation Effect of PP-g-MA Copolymer on iPP/SiO2 Nanocomposites Prepared by Melt Mixing[J]. Eur Polym J, 2005,41(9):1965-1978. doi: 10.1016/j.eurpolymj.2005.03.008

    25. [25]

      Dadbin S, Frounchi M, Saeid M H. Molecular Structure and Physical Properties of E-Beam Crosslinked Low-Density Polyethylene for Wire and Cable Insulation Applications[J]. J Appl Polym Sci, 2002,86(8):1959-1969. doi: 10.1002/app.11111

    26. [26]

      Ziaie F, Borhani M, Mirjalili G. Effect of Crystallinity on Electrical Properties of Electron Beam Irradiated LDPE and HDPE[J]. Radiat Phys Chem, 2007,76(11/12):1684-1687.  

    27. [27]

      Sharif J, Aziz S H S A, Hashim K. Radiation Effects on LDPE/EVA Blends[J]. Radiat Phys Chem, 2000,58(2):191-195.  

    28. [28]

      Hassan M A. Effect of Incorporation of Butyl Acrylate-Iron Chelate Resin on the Flammability Properties of Mg (OH)2-LDPE Compositions[J]. Polym-Plast Technol Eng, 2005,43(5):1487-1501. doi: 10.1081/PPT-200030241

    29. [29]

      Xiong L, Xiong D, Jin J. Study on Tribological Properties of Irradiated Crosslinking UHMWPE Nano-Composite[J]. J Bionic Eng, 2009,6(1):7-13. doi: 10.1016/S1672-6529(08)60102-X

    30. [30]

      Zhang Y, Yu J, Chen L. Surface Modification of Ultrahigh-Molecular-Weight Polyethylene Fibers with Coupling Agent During Extraction Process[J]. J Macromol Sci, 2009,48(2):391-404.  

  • 加载中
    1. [1]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    5. [5]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    15. [15]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

Metrics
  • PDF Downloads(41)
  • Abstract views(2135)
  • HTML views(670)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return