Citation: AN Lulu, MI Jie. Synthesis of Nickel Cobalt Hydroxide and Its Electrochemical Properties[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 579-586. doi: 10.11944/j.issn.1000-0518.2020.05.190315 shu

Synthesis of Nickel Cobalt Hydroxide and Its Electrochemical Properties

  • Corresponding author: MI Jie, mijie111@163.com
  • Received Date: 25 November 2019
    Revised Date: 17 January 2020
    Accepted Date: 11 March 2020

    Fund Project: Supported by the Major Projects of Shanxi Province(No.MC2015-04)the Major Projects of Shanxi Province MC2015-04

Figures(5)

  • In this work, the flake nickel cobalt hydroxide was successfully prepared by the chemical co-precipitation method, and the effect of nickel to cobalt molar ratios on the morphologies and electrochemical properties were explored. The structures and morphologies of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscope (XPS) and specific surface area and pore size analyzer (BET). The electrochemical properties were analyzed by cyclic voltammetry, galvanostatic charge/discharge, etc. The results show that when nickel cobalt hydroxide (n(Ni):n(Co)=4:1) is directly used as electrode material, it has a high specific capacitance of 1852 F/g at a current density of 0.5 A/g. When the current density is increased by 20 times, it still has a high specific capacitance of 1330 F/g. The asymmetric supercapacitor is assembled with nickel cobalt hydroxide as the positive electrode material and active carbon as the negative electrode material. The asymmetric cell possesses a high energy density of 52 Wh/kg at a power density of 346 W/kg, and superior cycle stability (the capacitance retention of 92% after 10000 cycles). Excellent electrochemical properties indicate that flake nickel cobalt hydroxide is one of the most promising electrode materials.
  • 加载中
    1. [1]

      Li M, Yang W, Li J. Porous Layered Stacked MnCo2O4 Cubes with Enhanced Electrochemical Capacitive Performance[J]. Nanoscale, 2018,10(5):2218-2225. doi: 10.1039/C7NR08239H

    2. [2]

      Deng C, Yang L, Yang C. Spinel FeCo2S4 Nanoflower Arrays Grown on Ni Foam as Novel Binder-Free Electrodes for Long-Cycle-Life Supercapacitors[J]. Appl Surf Sci, 2018,428:148-153. doi: 10.1016/j.apsusc.2017.09.130

    3. [3]

      Chen S, Yang G, Zheng H. Aligned Ni-Co-Mn Oxide Nanosheets Grown on Conductive Substrates as Binder-Free Electrodes for High Capacity Electrochemical Energy Storage Devices[J]. Electrochim Acta, 2016,220(100):296-303.  

    4. [4]

      Gou J, Xie S, Liu Y. Flower-Like Nickel-Cobalt Hydroxides Converted from Phosphites for High Rate Performance Hybrid Supercapacitor Electrode Materials[J]. Electrochim Acta, 2016,210(100):915-924.  

    5. [5]

      Jing C, Zhu Y, Liu X. Morphology and Crystallinity-Controlled Synthesis of Etched CoAl LDO/MnO2 Hybrid Nanoarrays Towards High Performance Supercapacitors[J]. J Alloys Compd, 2019,806:917-925. doi: 10.1016/j.jallcom.2019.07.304

    6. [6]

      ZHANG Xiong, WEI Min, LI Jing. Microwave Rapid Synthesis of Nickel-Cobalt Bimetallic Hydroxide for Supercapacitors[J]. Vac Electron, 2018,4:63-72.  

    7. [7]

      Singh S, Shinde N M, Xia Q X. Tailoring the Morphology Followed by the Electrochemical Performance of NiMn-LDH Nanosheet Arrays Through Controlled Co-doping for High-Energy and Power Asymmetric Supercapacitors[J]. Dalton Trans, 2017,46(38):12876-12883. doi: 10.1039/C7DT01863K

    8. [8]

      Yang W, Gao Z, Wang J. Solvothermal One-Step Synthesis of Ni-Al Layered Double Hydroxide/Carbon Nanotube/Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors[J]. ACS Appl Mater Interfaces, 2013,5(12):5443-5454. doi: 10.1021/am4003843

    9. [9]

      Wang L, Qin K, Li J. Nanotubular Ni-Supported Graphene@Hierarchical NiCo-LDH with Ultrahigh Volumetric Capacitance for Supercapacitors[J]. Appl Surf Sci, 2018,453:230-237. doi: 10.1016/j.apsusc.2018.05.060

    10. [10]

      Kulkarni S B, Jagadale A D, Kumbhar V S. Potentiodynamic Deposition of Composition Influenced Co1-xNix LDHs Thin Film Electrode for Redox Supercapacitors[J]. Int J Hydrogen Energy, 2013,38(10):4046-4053. doi: 10.1016/j.ijhydene.2013.01.047

    11. [11]

      Wang X, Huang F, Rong F. Unique MOF-Derived Hierarchical MnO2 Nanotubes@NiCo-LDH/CoS2 Nanocage Materials as High Performance Supercapacitors[J]. J Mater Chem A, 2019,7(19):12018-12028. doi: 10.1039/C9TA01951K

    12. [12]

      Le K, Wang Z, Wang F. Sandwich-Like NiCo Layered Double Hydroxide/Reduced Graphene Oxide Nanocomposite Cathodes for High Energy Density Asymmetric Supercapacitors[J]. Dalton Trans, 2019,48(16):5193-5202. doi: 10.1039/C9DT00615J

    13. [13]

      Zhou L J, Huang X, Chen H. A High Surface Area Flower-Like Ni-Fe Layered Double Hydroxide for Electrocatalytic Water Oxidation Reaction[J]. Dalton Trans, 2015,44(25):11592-11600. doi: 10.1039/C5DT01474C

    14. [14]

      Li T, Li R, Luo H. Facile in Situ Growth of Ni/Co-LDH Arrays by Hypothermal Chemical Coprecipitation for All-Solid-State Asymmetric Supercapacitors[J]. J Mater Chem A, 2016,4(48):18922-18930. doi: 10.1039/C6TA08032D

    15. [15]

      Liang H, Lin J, Jia H. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH Hybrid Electrodes on Carbon Cloth for Excellent Supercapacitors[J]. J Mater Chem A, 2018,6(31):15040-15046. doi: 10.1039/C8TA05065A

    16. [16]

      Li M, Cheng J P, Liu F. 3D-Architectured Nickel-Cobalt-Manganese Layered Double Hydroxide/Reduced Graphene Oxide Composite for High-Performance Supercapacitor[J]. Chem Phys Lett, 2015,640(100):5-10.  

    17. [17]

      Cao F, Gan M, Ma L. Hierarchical Sheet-Like Ni-Co Layered Double Hydroxide Derived from a MOF Template for High-Performance Supercapacitors[J]. Synth Met, 2017,234:154-160. doi: 10.1016/j.synthmet.2017.11.001

    18. [18]

      Jia H, Wang Z, Zheng X. Interlaced Ni-Co LDH Nanosheets Wrapped Co9S8 Nanotube with Hierarchical Structure Toward High Performance Supercapacitors[J]. Chem Eng J, 2018,351:348-355. doi: 10.1016/j.cej.2018.06.113

    19. [19]

      Li J, hen S, Zhu X. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors Through Engineered Hollow Nanoparticles of NiCo2O4[J]. Adv Sci, 2017,4(12)1700345. doi: 10.1002/advs.201700345

    20. [20]

      Liang H, Lin J, Jia H. Hierarchical NiCo-LDH@NiOOH Core-Shell Heterostructure on Carbon Fiber Cloth as Battery-Like Electrode for Supercapacitor[J]. J Power Sources, 2018,378:248-254. doi: 10.1016/j.jpowsour.2017.12.046

  • 加载中
    1. [1]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    10. [10]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    11. [11]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    15. [15]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    16. [16]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

Metrics
  • PDF Downloads(19)
  • Abstract views(2315)
  • HTML views(830)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return