Citation: ZENG Lihui, LI Yuefeng, YAN Haoxiang, ZENG Yongkang, ZHANG Zhixiang, LIU Zhongwen, LIU Zhaotie. Catalytic Hydrogenation Performance of p-tert-Butyl-α-Methyl Cinnamaldehydeover Precious Metal Catalysts[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 322-331. doi: 10.11944/j.issn.1000-0518.2020.03.190192 shu

Catalytic Hydrogenation Performance of p-tert-Butyl-α-Methyl Cinnamaldehydeover Precious Metal Catalysts

  • Corresponding author: LIU Zhaotie, ztliu@snnu.edu.cn
  • Received Date: 9 July 2019
    Revised Date: 10 January 2020
    Accepted Date: 11 February 2020

    Fund Project: the Key Industry Innovation Chain of Shaanxi Science and Technology Department(group) 2019ZDLGY06-04Supported by the Key Industry Innovation Chain of Shaanxi Science and Technology Department(group)(No.2019ZDLGY06-04)

Figures(10)

  • In this paper, Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, X-ray diffraction (XRD) andtransmission electron microscopy (TEM) were used to characterize the activated carbon treated via microwave with KOH. The results show that the oxygen-containing groups on the surface of activated carbon increase greatly, and the number of micropores decrease significantly. The selective catalytic hydrogenation performances of p-tert-butyl-α-methyl cinnamaldehyde over Pt, Pd, Ru and Rh supported on activated carbon were investigated. The Pt/C catalyst shows excellent selective hydrogenation for C═O, while the Pd/C catalyst has good selectivity for hydrogenation of C═C. The product distribution of selective hydrogenation of p-tert-butyl-α-methylcinnamaldehyde catalyzed by Pd-Pt bimetallic catalyst was also studied. The results show that the selective hydrogenation of C═O is gradually increased with an increase of Pt content, while the selectivity of hydrogenation of C═C decreases gradually over the Pd-Pt bimetallic catalyst. An optimal catalytic performance is obtained over Pd-Pt bimetallic catalyst when m(Pd):m(Pt)=4:1.
  • 加载中
    1. [1]

      Su J, Chen J S. Synthetic Porous Materials Applied in Hydrogenation Reactions[J]. Micropor Mesopor Mater, 2017,237:246-259. doi: 10.1016/j.micromeso.2016.09.039

    2. [2]

      Long J, Shen K, Li Y W. Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles:Controllable Selectivity to Primary Amines vs Imines[J]. ACS Catal, 2016,7(1):275-284. doi: 10.1021/acscatal.6b02327

    3. [3]

      Amir M, Kurtan U, Baykal A. Synthesis and Application of Magnetically Recyclable Nanocatalyst Fe3O4@Nico@Cu in the Reduction of Azo Dyes[J]. Chinese J Catal, 2015,36(8):1280-1286. doi: 10.1016/S1872-2067(15)60879-8

    4. [4]

      Wang H, Rempel G L. Aqueous-Phase Catalytic Hydrogenation of Unsaturated Polymers[J]. Catal Today, 2015,247:117-123. doi: 10.1016/j.cattod.2014.04.027

    5. [5]

      Pérez L N, Moreno-Marrodan C, Barbaro P. PdNP@Titanate Nanotubes as Effective Catalyst for Continuous-Flow Partial Hydrogenation Reactions[J]. ChemCatChem, 2016,8(S):1001-1011.  

    6. [6]

      Teddy J, Falqui A, Corrias A. Influence of Particles Alloying on the Performances of Pt-Ru/CNT Catalysts for Selective Hydrogenation[J]. J Catal, 2011,278(1):59-70.  

    7. [7]

      Wu J C S, Chen W C. A Novel BN Supported Bi-metal Catalyst for Selective Hydrogenation of Crotonaldehyde[J]. Appl Catal A, 2005,289(2):179-185.  

    8. [8]

      Leng F Q, Gerber I C, Axet M R. Selectivity Shifts in Hydrogenation of Cinnamaldehyde on Electro-deficient Ruthenium Nanoparticles[J]. C R Chim, 2018,21(3/4):346-353.  

    9. [9]

      FU Xiancai, SHEN Wenxia, YAO Tianyang. Physical Chemistry(The Fourth edition)(The First Volume)[M]. Beijing:Higher Education Press, 1989, 66(in Chinese).

    10. [10]

      YI Shumei. Studies of Hydrogenation Reaction Kinetics of α, β-Unsaturated Aldehydes and Ketones over Amorphous Alloy NiB[D]. Dalian: Dalian University of Technology, 2007(in Chinese).

    11. [11]

      Bai Y, Cherkasov N, Huband S. Highly Selective Continuous Flow Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in a Pt/SiO2 Coated Tube Reactor[J]. Catalysts, 2018,58(8):1-18.  

    12. [12]

      Hu D, Fan W Q, Liu Z. Three-Dimensionally Hierarchical Pt/C Nanocompsite with Ultra-High Dispersion of Pt Nanoparticles as a Highly Efficient Catalyst for Chemoselective Cinnamaldehyde Hydrogenation[J]. ChemCatChem, 2018,10(4):779-788. doi: 10.1002/cctc.201701301

    13. [13]

      FAN Chengyou. Spices and Their Applications[M]. Beijing:Chemical Industry Press, 1990, 263(in Chinese).

    14. [14]

      Bartok M, Molnar A. The Chemistry of Double-Bonded Functional Groups[M]. New York:Wiley, 1983:843-865.

    15. [15]

      ZHANG Guoan, SHI Gailiang, XUE Xiangru. Synthesis of 4-tert-Butyl-β-chloro-α-methyl Cinnamaldehyde[J]. Chem World, 1991(1):12-13.  

    16. [16]

      SONG Shuzhong, TANG Yongshan, PAN Guizhi. Seletive Hydrogenation of Substituted α-Methyl Cinnamic Aldehyde[J]. Fine Chem, 1994,4(11):16-18.  

    17. [17]

      LIANG Yan, RONG Zemin, ZHENG Feiyue. Selective Hydrogenation of p-tert-Butyl-α-methyl Cinnamaldehyde to Lilial over Modified Pd/C[J]. Fine Chem, 2011,6(28):564-567.  

    18. [18]

      Joseph L, Paramus N J, Alvin F. Hydrogenation of CinnamicAldehydes and Derivatives Thereof: US, 3280192[P]. 1966-10-18.

    19. [19]

      DENG Qinying, LIU Lan, DENG Huimin. Spectral Analysis Tutorial[M]. Beijing:Science Press, 2007:29-72(in Chinese).

    20. [20]

      Laine J, Calafat A, Labady M. Preparation and Characterization of Activated Carbons from Coconut Shell Impregnated with Phosphoric Acid[J]. Carbon, 1989,27(2):191-195. doi: 10.1016/0008-6223(89)90123-1

    21. [21]

      Shen W Z, Li Z J, Liu Y H. Surface Chemical Functional Groups Modification of Porous Carbon[J]. Recent Pat Chem Eng, 2008,1(1):27-40. doi: 10.2174/2211334710801010027

    22. [22]

      CHEN Zhening, CHEN Zheng, FU Gang, et al. Mechanisms for the Selective Reduction of Cinnamaldehyde[C]//The 27th Annual Meeting of the Chinese Chemical Society, Summary of the 11th Session, 2010, 11-P-098(in Chinese).

    23. [23]

      Giroir-Fendler A, Richard D, Gallezot P. Selectivity in Cinnamaldehyde Hydrogenation of Group-Ⅷ Metals Supported on Graphite and Carbon[J]. Stud Surf Sci Catal, 1988,41:171-178. doi: 10.1016/S0167-2991(09)60812-0

    24. [24]

      Delbecq F, Sautet P. Competitive C=C and C=O Adsorption of α, β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions:A Theoretical Approach[J]. J Catal, 1995,152(2):217-236.

    25. [25]

      Matsui T, Harada M, Bando K K. EXAFS Study on the Sulfidation Behavior of Pd, Pt and Pd-Pt Catalysts Supported on Amorphous Silica and High-silica USY Zeolite[J]. Appl Catal A, 2005,290(1/2):73-80.  

    26. [26]

      Niquille-Röthlisberger A, Prins R. Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene and Dibenzothiopheneover Alumina-Supported Pt, Pd, and Pt-Pd Catalysts[J]. J Catal, 2006,242(1):207-216.  

    27. [27]

      Yasuda H, Yoshimura Y. Hydrogenation of Tetralinover Zeolite-supported Pd-Pt Catalysts in the Presence of Dibenzothiophene[J]. Catal Lett, 1997,46(1/2):43-48. doi: 10.1023/A:1019021224505

    28. [28]

      Matsubayashi N, Yasuda H, Imaura M. EXAFS Study on Pd-Pt Catalyst Supported on USY Zeolite[J]. Catal Today, 1998,45(1/4):375-380.  

    29. [29]

      Yasuda H, Matsubayashi N, Sato T. Confirmation of Sulfur Tolerance of Bimetallic Pd-Pt Supported on Highly Acidic USY Zeolite by EXAFS[J]. Catal Lett, 1998,54(1/2):23-27. doi: 10.1023/A:1019079906043

    30. [30]

      Guillon E, Lynch J, Uzio D. Characterisation of Bimetallic Platinum Systems:Application to the Reduction of Aromatics in Presence of Sulfur[J]. Catal Today, 2001,65(2/4):201-208.  

    31. [31]

      Lee J K, Rhee H K. Sulfur Tolerance of Zeolite Beta-Supported Pd-Pt Catalysts for the Isomerization of n-Hexane[J]. J Catal, 1998,177(2):208-216.  

  • 加载中
    1. [1]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    16. [16]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    17. [17]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    20. [20]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

Metrics
  • PDF Downloads(4)
  • Abstract views(2915)
  • HTML views(533)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return