Citation: SHI Ce, CAI Yuyang, CUI Fengchao, LI Yunqi. Characterization of Microscopic Structure of Nafion in Dispersion Using Small Angle X-Ray Scattering[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1406-1412. doi: 10.11944/j.issn.1000-0518.2019.12.190222 shu

Characterization of Microscopic Structure of Nafion in Dispersion Using Small Angle X-Ray Scattering

  • Corresponding author: LI Yunqi, yunqi@ciac.ac.cn
  • Received Date: 17 August 2019
    Revised Date: 11 September 2019
    Accepted Date: 18 September 2019

    Fund Project: the National Natural Science Foundation of China U1832177Supported by the National Natural Science Foundation of China(No.21774128, No.U1832177), and the Key Research Projects in Frontier Science of the Chinese Academy of Sciences(No.QYZDY-SSW-SLH027)the National Natural Science Foundation of China 21774128the Key Research Projects in Frontier Science of the Chinese Academy of Sciences QYZDY-SSW-SLH027

Figures(2)

  • Small angle X-ray scattering was used to characterize the microscopic structure of Nafion in its dispersion composed by different volume ratios of N-methylformamide and n-butanol. The results show that Nafion forms typical micelle structures in its dispersion, because of the synergistic effect of rigidity of main chain and hydrophobicity/hydrophilicity of main/side chain. The radius of gyration(Rg) of micelles exhibits the scale of -0.42 as the increase of Nafion mass concentration, which is in consistent with the theoretical scale of polyelectrolyte in salt free solvents. The correlation length between micelles shows a scale of -0.13, identical to the theoretical scale of typical neutral polymer solutions. Lower polarity n-butanol promotes the formation of long micelles, while high polarity N-methylformamide promotes the dispersion of Nafion. This study provides a clear guidance for understanding the properties of Nafion dispersions and the formation of micro-structure of Nafion films prepared by wet method.
  • 加载中
    1. [1]

      Kusoglu A, Weber A Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers[J]. Chem Rev, 2017,117(3):987-1104.  

    2. [2]

      Berlinger S A, McCloskey B D, Weber A Z. Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation[J]. J Phys Chem B, 2018,122(31):7790-7796. doi: 10.1021/acs.jpcb.8b06493

    3. [3]

      Balu R, Choudhury N R, Mata J P. Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent:A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation[J]. ACS Appl Mater Interfaces, 2019,11(10):9934-9946. doi: 10.1021/acsami.8b20645

    4. [4]

      WANG Hai, WANG Jianwu, XU Boqing. On Solubility of Perfluororesinsulfonic Acid[J]. Chinese J Appl Chem, 2001,18(10):798-801. doi: 10.3969/j.issn.1000-0518.2001.10.008 

    5. [5]

      ZU Yanbing, CHA Chuansin. Improvement of Hydrophilicity of Nafion Membrane Surface by Modification with Perfluorinated Surfactants[J]. Chinese J Appl Chem, 1995,12(1):33-36.  

    6. [6]

      Chen W, Cui F, Liu L. Assembled Structures of Perfluorosulfonic Acid Ionomers Investigated by Anisotropic Modeling and Simulations[J]. J Phys Chem B, 2017,121(41):9718-9724. doi: 10.1021/acs.jpcb.7b06412

    7. [7]

      Welch C, Labouriau A, Hjelm R. Nafion in Dilute Solvent Systems:Dispersion or Solution?[J]. ACS Macro Lett, 2012,1(12):1403-1407. doi: 10.1021/mz3005204

    8. [8]

      Martin C R, Rhoades T A, Ferguson J A. Dissolution of Perfluorinated Ion Containing Polymers[J]. Anal Chem, 1982,54(9):1639-1641. doi: 10.1021/ac00246a040

    9. [9]

      Allen F I, Comolli L R, Kusoglu A. Morphology of Hydrated as-Cast Nafion Revealed through Cryo Electron Tomography[J]. ACS Macro Lett, 2015,4(1):1-5. doi: 10.1021/mz500606h

    10. [10]

      Wang C, Krishnan V, Wu D. Evaluation of the Microstructure of Dry and Hydrated Perfluorosulfonic Acid Ionomers:Microscopy and Simulations[J]. J Mater Chem A, 2013,1(3):938-944. doi: 10.1039/C2TA01034H

    11. [11]

      Mochizuki T, Kakinuma K, Uchida M. Temperature-and Humidity-Controlled SAXS Analysis of Proton-Conductive Ionomer Membranes for Fuel Cells[J]. ChemSusChem, 2014,7(3):729-733. doi: 10.1002/cssc.201301322

    12. [12]

      Gebel G, Diat O. Neutron and X-Ray Scattering:Suitable Tools for Studying Ionomer Membranes[J]. Fuel Cells, 2005,5(2):261-276.  

    13. [13]

      Rubatat L, Gebel G, Diat O. Fibrillar Structure of Nafion:Matching Fourier and Real Space Studies of Corresponding Films and Solutions[J]. Macromolecules, 2004,37(20):7772-7783. doi: 10.1021/ma049683j

    14. [14]

      Schmidt-Rohr K, Chen Q. Parallel Cylindrical Water Nanochannels in Nafion Fuel-Cell Membranes[J]. Nat Mater, 2008,7(1):75-83.  

    15. [15]

      Fujimura M, Hashimoto T, Kawai H. Small-Angle X-Ray-Scattering Study of Perfluorinated Ionomer Membranes.2.Models for Ionic Scattering Maximum[J]. Macromolecules, 1982,15(1):136-144. doi: 10.1021/ma00229a028

    16. [16]

      Kusoglu A, Dursch T J, Weber A Z. Nanostructure/Swelling Relationships of Bulk and Thin-Film Pfsa Ionomers[J]. Adv Funct Mater, 2016,26(27):4961-4975. doi: 10.1002/adfm.201600861

    17. [17]

      Moore R B, Martin C R. Chemical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers[J]. Macromolecules, 1988,21(5):1334-1339. doi: 10.1021/ma00183a025

    18. [18]

      Chu B, Wu C, Buck W. Light-Scattering Characterization of Poly(Tetrafluoroethylene).2.PTFE in Perfluorotetracosane-Molecular-Weight Distribution and Solution Properties[J]. Macromolecules, 1989,22(2):831-837. doi: 10.1021/ma00192a053

    19. [19]

      RosiSchwartz B, Mitchell G R. Extracting Force Fields for Disordered Polymeric Materials from Neutron Scattering Data[J]. Polymer, 1996,37(10):1857-1870. doi: 10.1016/0032-3861(96)87302-2

    20. [20]

      Kusoglu A, Savagatrup S, Clark K T. Role of Mechanical Factors in Controlling the Structure-Function Relationship of PFSA Ionomers[J]. Macromolecules, 2012,45(18):7467-7476. doi: 10.1021/ma301419s

    21. [21]

      Shi C, Xi S, Han Y. Structure, Rheology and Electrospinning of Zein and Poly(Ethylene Oxide) in Aqueous Ethanol Solutions[J]. Chinese Chem Lett, 2019,30(2):305-310. doi: 10.1016/j.cclet.2018.07.010

    22. [22]

      SHI Ce, LI Yunqi. Progress on the Application of Small-Angle X-Ray Scattering in the Study of Protein and Protein Complexes[J]. Acta Polym Sin, 2015,8:871-883.  

    23. [23]

      Liu L, Chen W, Li Y. An Overview of the Proton Conductivity of Nafion Membranes Through a Statistical Analysis[J]. J Membr Sci, 2016,504:1-9. doi: 10.1016/j.memsci.2015.12.065

    24. [24]

      Hsu W Y, Gierke T D. Ion-Transport and Clustering in Nafion Perfluorinated Membranes[J]. J Membr Sci, 1983,13(3):307-326. doi: 10.1016/S0376-7388(00)81563-X

    25. [25]

      Gierke T D, Munn G E, Wilson F C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-Angle and Small-Angle X-Ray Studies[J]. J Polym Sci Polym Phys, 1981,19(11):1687-1704. doi: 10.1002/pol.1981.180191103

    26. [26]

      Aldebert P, Dreyfus B, Pineri M. Small-Angle Neutron-Scattering of Perfluorosulfonated Ionomers in Solution[J]. Macromolecules, 1986,19(10):2651-2653. doi: 10.1021/ma00164a035

    27. [27]

      Aldebert P, Dreyfus B, Gebel G. Rod Like Micellar Structures in Perfluorinated Ionomer Solutions[J]. J Phys, 1988,49(12):2101-2109. doi: 10.1051/jphys:0198800490120210100

    28. [28]

      Gebel G. Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution[J]. Polymer, 2000,41(15):5829-5838. doi: 10.1016/S0032-3861(99)00770-3

    29. [29]

      Moore R B, Martin C R. Procedure for Preparing Solution-Cast Perfluorosulfonate Ionomer Films and Membranes[J]. Anal Chem, 1986,58(12):2569-2570. doi: 10.1021/ac00125a046

    30. [30]

      Gebel G, Aldebert P, Pineri M. Structure and Related Properties of Solution-Cast Perfluorosulfonated Ionomer Films[J]. Macromolecules, 1987,20(6):1425-1428. doi: 10.1021/ma00172a049

    31. [31]

      Laporta M, Pegoraro M, Zanderighi L. Recast Nafion-117 Thin Film from Water Solution[J]. Macromol Mater Eng, 2000,282(9):22-29.  

    32. [32]

      Ludvigsson M, Lindgren J, Tegenfeldt J. Crystallinity in Cast Nafion[J]. J Electrochem Soc, 2000,147(4):1303-1305.  

    33. [33]

      Collette F M, Thominette F, Mendil-Jakani H. Structure and Transport Properties of Solution-Cast Nafion Membranes Subjected to Hygrothermal Aging[J]. J Membr Sci, 2013,435:242-252. doi: 10.1016/j.memsci.2013.02.002

    34. [34]

      Wang Z, Tang H, Li J. Insight into the Structural Construction of a Perfluorosulfonic Acid Membrane Derived from a Polymeric Dispersion[J]. J Power Sources, 2014,256:383-393. doi: 10.1016/j.jpowsour.2014.01.096

    35. [35]

      Dai J, Teng X, Song Y. Effect of Casting Solvent and Annealing Temperature on Recast Nafion Membranes for Vanadium Redox Flow Battery[J]. J Membr Sci, 2017,522:56-67. doi: 10.1016/j.memsci.2016.09.014

    36. [36]

      Hansen C M. Hansen Solubility Parameters a User's Handbook[M]. 2nd ed. Boca Raton:CRC Press, 2007:6-15.

    37. [37]

      Sebastian D. Changes in Biomolecular Conformation Seen by Small Angle X-Ray Scattering[J]. Chem Rev, 2001,101(6):1763-1778. doi: 10.1021/cr990071k

    38. [38]

      Loppinet B, Gebel G, Williams C E. Small-Angle Scattering Study of Perfluorosulfonated Ionomer Solutions[J]. J Phys Chem B, 1997,101(10):1884-1892. doi: 10.1021/jp9623047

    39. [39]

      Colby R H. Structure and Linear Viscoelasticity of Flexible Polymer Solutions:Comparison of Polyelectrolyte and Neutral Polymer Solutions[J]. Rheol Acta, 2010,49(5):425-442. doi: 10.1007/s00397-009-0413-5

    40. [40]

      Yamaguchi M, Matsunaga T, Amemiya K. Dispersion of Rod-Like Particles of Nafion in Salt-Free Water/1-Propanol and Water/Ethanol Solutions[J]. J Phys Chem B, 2014,118(51):14922-14928.  

    41. [41]

      Li Y, Huang Q, Shi T. How Does Solvent Molecular Size Affect the Microscopic Structure in Polymer Solutions?[J]. J Chem Phys, 2006,125(4):0449021-0449026.  

    42. [42]

      de Gennes P G. Scaling Concepts in Polymer Physics[M]. Ithaca New York:Cornell University Press, 1979.

  • 加载中
    1. [1]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    7. [7]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    18. [18]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    19. [19]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    20. [20]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

Metrics
  • PDF Downloads(37)
  • Abstract views(2158)
  • HTML views(587)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return