Citation: FAN Luhao, ZHANG Chi, JIAO Zengtong, HE Linfeng, QI Meili, XU Gang, CHEN Xiaotong. Pore Structure of Matrix Graphite and Its Effect on Ag Diffusion[J]. Chinese Journal of Applied Chemistry, ;2019, 36(12): 1430-1438. doi: 10.11944/j.issn.1000-0518.2019.12.190106 shu

Pore Structure of Matrix Graphite and Its Effect on Ag Diffusion

Figures(7)

  • As a high temperature gas cooled reactor fuel element, matrix graphite is a porous composite material that is a major component of the fuel element. The structure of matrix graphite affects the performance of the fuel element and the diffusion of fission products inside. In this paper, the pore structure of matrix graphite was characterized by mercury intrusion method, and the influences of the maximum pressing pressure in the preparation process and further heat treatment process on the pore structure of matrix graphite were discussed. The results show that the pore size of large pores in the matrix graphite is 600~1900 nm. High-temperature heat treatment reduces the total porosity, the median pore diameter and the volume of large pores in the matrix graphite. The volume of large pores in the matrix graphite decreases linearly with the increase of the maximum pressing pressure in preparation process. Meanwhile, the diffusion rate of Ag in the graphite matrix has a positive correlation with the variation of the pore volume during high-temperature heat treatment.
  • 加载中
    1. [1]

      Zhang Z, Yu S. Future HTGR Developments in China after the Criticality of the HTR-10[J]. Nucl Eng Des, 2002,218(1/3):249-257.  

    2. [2]

      Powers J J, Wirth B D. A Review of TRISO Fuel Performance Models[J]. J Nucl Mater, 2010,405(1):74-82. doi: 10.1016/j.jnucmat.2010.07.030

    3. [3]

      Yeo S, Yun J, Kim S. Fabrication Methods and Anisotropic Properties of Graphite Matrix Compacts for Use in HTGR[J]. J Nucl Mater, 2017,499:383-393.  

    4. [4]

      TANG Chunhe. High Temperature Gas Cooled Reactor Fuel Element[M]. Chemical Industry Press, 2007(in Chinese).

    5. [5]

      Yu X, Yu S. Analysis of Fuel Element Matrix Graphite Corrosion in HTR-PM for Normal Operating Conditions[J]. Nucl Eng Des, 2010,240(4):738-743. doi: 10.1016/j.nucengdes.2009.12.015

    6. [6]

      CHUAN Xiuyun, ZHANG Xiaolin. Properties, Types, Production and Application of Nuclear Graphite in Nuclear Reactors[J]. Carbon Tech, 2009,28(6):28-35.  

    7. [7]

      Sumita J, Shibata T, Iyoku T. Principle Design of Graphite Components for HTTR and R&D on Nuclear Graphite for HTGR in JAEA[J]. Key Eng Mater, 2016,697:797-806. doi: 10.4028/www.scientific.net/KEM.697.797

    8. [8]

      ZHOU Xiangwen, YI Zilong, LU Zhenming. Graphite Materials in Pebble-Bed High Temperature Gas-Cooled Reactors[J]. Carbon Tech, 2012,31(6):9-13.  

    9. [9]

      ZHANG Zuoyi, WU Zongxin, WANG Dazhong. Development Strategy of High Temperature Gas Cooled Reactor in China[J]. Eng Sci, 2019,21(1):12-19.  

    10. [10]

      Iniotakis N, Decken C B, Röllig K. Plate-Out of Fission Products and Its Effect on Maintenance and Repair[J]. Nucl Eng Des, 1984,78(2):273-284.  

    11. [11]

      CAO Jianzhu, XI Shuren. Study on Retaining Performance of Fuel Element and Coated Particles to Fission Products in HTGR[J]. Nucl Power Eng, 1999(5):440-443, 458.  

    12. [12]

      JIANG Ziying, ZHANG Yanqi, WEN Baoyin. Study on Minimization Strategy of Radioactive Waste of HTR-PM Nuclear Power Plants[J]. Radiat Prot, 2018,38(2):161-170.  

    13. [13]

      Hoinkis E, Allen A J. A Study of Precursory, Original, and Oxidized Graphitic Matrix A3-3 by Small Angle Neutron Scattering[J]. Carbon, 1991,29:93-100. doi: 10.1016/0008-6223(91)90099-5

    14. [14]

      Mergia K, Stefanopoulos K L, Ordás N. A Comparative Study of the Porosity of Doped Graphites by Small Angle Neutron Scattering, Nitrogen Adsorption and Helium Pycnometry[J]. Micropor Mesopor Mater, 2010,134:141-149. doi: 10.1016/j.micromeso.2010.05.019

    15. [15]

      Jones K L, Laudone G M, Matthews G P. A Multi-technique Experimental and Modelling Study of the Porous Structure of IG-110 and IG-430 Nuclear Graphite[J]. Carbon, 2018,128:1-11. doi: 10.1016/j.carbon.2017.11.076

    16. [16]

      Kadlec O. On the Theory of Capillary Condensation and Mercury Intrusion in Determining Carbon Porosity[J]. Carbon, 1989,27(1):141-155. doi: 10.1016/0008-6223(89)90168-1

    17. [17]

      Wang P, Contescu C I, Yu S. Pore Structure Development in Oxidized IG-110 Nuclear Graphite[J]. J Nucl Mater, 2012,430(1/3):229-238.  

    18. [18]

      Karthik C, Kane J, Butt D P. Neutron Irradiation Induced Microstructural Changes in NBG-18 and IG-110 Nuclear Graphites[J]. Carbon, 2015,86:124-131. doi: 10.1016/j.carbon.2015.01.036

    19. [19]

      LU Zhenming, ZHANG Jie, ZHOU Xiangwen. Optimization of Carbonization Process in Manufacture of Fuel Elements for HTGR[J]. Nucl Power Eng, 2013,34(5):71-75.  

    20. [20]

      Hoinkis E, Robens E. Surface Area and Porosity of Unmodified Graphitic Matrices A3-27 and A3-3(1950) and Oxidized Matrix A3-3(1950)[J]. Carbon, 1989,27(1):157-168. doi: 10.1016/0008-6223(89)90169-3

    21. [21]

      Yao Y, Liu D. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals[J]. Fuel, 2012,95:152-158. doi: 10.1016/j.fuel.2011.12.039

    22. [22]

      CAI Shaohua. Elemental Inorganic Chemistry[M]. Sun Yat-sen University Press, 1998(in Chinese).

    23. [23]

      Trick K A, Saliba T E. Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite[J]. Carbon, 1995,33(11):1509-1515. doi: 10.1016/0008-6223(95)00092-R

    24. [24]

      XU Shijiang, KANG Feiyu. Carbon and Graphite Materials in Nuclear Engineering[M]. Beijing:Tsinghua University Press, 2010(in Chinese).

    25. [25]

      Hoinkis E. The Diffusion of Silver in the Graphitic Matrix A3-3 and A3-27[J]. J Nucl Mater, 1994,209(2):132-147. doi: 10.1016/0022-3115(94)90288-7

  • 加载中
    1. [1]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    3. [3]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    4. [4]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    6. [6]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    9. [9]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    12. [12]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    13. [13]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    18. [18]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(4)
  • Abstract views(1128)
  • HTML views(269)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return