Citation: CAI Yi, GUO Hongchen, CAO Han, GAO Fengxiang, ZHOU Qinghai, WANG Xianhong. Synthesis and Properties of Ultraviolet-Irradiation Resistant Carbon Dioxide Copolymer[J]. Chinese Journal of Applied Chemistry, ;2019, 36(11): 1248-1256. doi: 10.11944/j.issn.1000-0518.2019.11.190210 shu

Synthesis and Properties of Ultraviolet-Irradiation Resistant Carbon Dioxide Copolymer

  • Corresponding author: WANG Xianhong, xhwang@ciac.ac.cn
  • Received Date: 15 July 2019
    Revised Date: 20 August 2019
    Accepted Date: 10 September 2019

    Fund Project: the Science and Technology Service Network Initiative of Chinese Academy of Sciences(STS) KFJ-STS-QYZD-047Supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences(STS)(No.KFJ-STS-QYZD-047)

Figures(7)

  • CO2 based plastics (PPC) is a high molecular mass copolymer of carbon dioxide and propylene oxide. PPC is quite sensitive to ultraviolet (UV) irradiation and its molecular mass decreases quickly with UV-irradiation accompanied by significant loss of mechanical strength. To improve the UV irradiation resistance of PPC is of key importance for its application as agricultural mulching film, which is always under UV irradiation during the whole coverage. In this work, an epoxide with UV absorber function, i.e., 2-hydroxy-4(2, 3-epoxypropoxy)benzophenone (HEB), was designed and prepared. By means of terpolymerization of CO2, propylene oxide and HEB, terpolymer PPCH with UV absorber side chain was successfully synthesized, where the chemical structure as well as the HEB content was determined by 1H NMR spectroscopy. Under the premise of ensuring PPCH molecular mass not less than 5.0×104, the maximum molar fraction of HEB incorporated into the PPCH terpolymer was 0.32%, and such PPCH showed a tensile strength of 30.97 MPa, a glass transition temperature (Tg) of 26.7℃, and the temperature at 5% mass loss of thermal decomposition (Td-5%) of 216.9℃. When PPC was exposed under UV irradiation for 240 h, its number-average molecular mass decreased by 67.8%, accompanied by 10.1% loss of tensile strength and 40.1% loss of elongation at break. As a comparison, the number-average molecular mass of PPCH with 0.06% molar fraction HEB showed only 6.2% decrease correspondingly. It showed 1.7% loss of tensile strength and 13.3% decrease of elongation at break, indicating that PPCH had improved UV-irradiation resistance performance due to the existence of UV absorbable functional group like HEB. PPCH and PPC blended with similar 2, 4-dihydroxyl benzophenone (BP) content were compared for hot water (50℃) extraction test. No BP was extracted in PPCH providing stable UV absorption performance, while the PPC/BP blend showed sharp drop in UV absorption upon hot water extraction. Therefore, terpolymerization of CO2, propylene oxide with UV absorbable monomer is an effective way to improve the UV irradiation resistance performance of CO2 copolymer.
  • 加载中
    1. [1]

      Inoue S, Koinuma H, Tsuruta T. Copolymerization of Carbon Dioxide and Epoxide[J]. J Polym Sci, Part B:Polym Lett, 1969,7:287-292. doi: 10.1002/pol.1969.110070408

    2. [2]

      Coates G W, Moore D R. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides:Discovery, Reactivity, Optimization, and Mechanism[J]. Angew Chem Int Ed, 2004,43:6618-6639. doi: 10.1002/anie.200460442

    3. [3]

      Klaus S, Lehenmeier M W, Anderson C E. Recent Advances in CO2/Epoxide Copolymerization-New Strategies and Cooperative Mechanisms[J]. Coord Chem Rev, 2011,255:1460-1479. doi: 10.1016/j.ccr.2010.12.002

    4. [4]

      Qin Y S, Sheng X F, Liu S J. Recent Advances in Carbon Dioxide Based Copolymers[J]. J CO2 Util, 2015,11:3-9. doi: 10.1016/j.jcou.2014.10.003

    5. [5]

      Grignard B, Gennen S, Jerome C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers[J]. Chem Soc Rev, 2019,48:4466-4514. doi: 10.1039/C9CS00047J

    6. [6]

      Kamphuis A J, Picchioni F, Pescarmona P P. CO2-Fixation into Cyclic and Polymeric Carbonates:Principles and Applications[J]. Green Chem, 2019,21:406-448. doi: 10.1039/C8GC03086C

    7. [7]

      Nakano K, Kamada T, Nozaki K. Selective Formation of Polycarbonate over Cyclic Carbonate:Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt(Ⅲ) Complex with a Piperidinium End-Capping Arm[J]. Angew Chem Int Ed, 2006,45:7274-7277. doi: 10.1002/anie.200603132

    8. [8]

      Sujith S, Min J K, Seong J E. Highly Active and Recyclable Catalytic System for CO2/Propylene Oxide Copolymerization[J]. Angew Chem Int Ed, 2008,47:7306-7309. doi: 10.1002/anie.200801852

    9. [9]

      Wang Y, Qin Y S, Wang X H. Trivalent Titanium Salen Complex:Thermally Robust and Highly Active Catalyst for Copolymerization of CO2 and Cyclohexene Oxide[J]. ACS Catal, 2014,5:393-396.

    10. [10]

      Zhuo C W, Qin Y S, Wang X H. Steric Hindrance Ligand Strategy to Aluminum Porphyrin Catalyst for Completely Alternative Copolymerization of CO2 and Propylene Oxide[J]. Chinese J Polym Sci, 2017,36:252-260.  

    11. [11]

      Zhuo C W, Qin Y S, Wang X H. Temperature-Responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide[J]. Chinese J Chem, 2018,36:299-305. doi: 10.1002/cjoc.201800019

    12. [12]

      Liu S J, Miao Y Y, Qiao L J. Controllable Synthesis of a Narrow Polydispersity CO2-Based Oligo(Carbonate-Ether) Tetraol[J]. Polym Chem, 2015,6:7580-7585. doi: 10.1039/C5PY00556F

    13. [13]

      Liu S J, Qin Y S, Qiao L J. Cheap and Fast:Oxalic Acid Initiated CO2-Based Polyols Synthesized by a Novel Preactivation Approach[J]. Polym Chem, 2016,7:146-152. doi: 10.1039/C5PY01338K

    14. [14]

      Huang Z, Wang Y, Zhang N. One-Pot Synthesis of Ion-Containing CO2-Based Polycarbonates Using Protic Ionic Liquids as Chain Transfer Agents[J]. Macromolecules, 2018,51:9122-9130. doi: 10.1021/acs.macromol.8b01834

    15. [15]

      Yang G W, Zhang Y Y, Wang Y Y. Construction of Autonomic Self-healing CO2-Based Polycarbonates via One-Pot Tandem Synthetic Strategy[J]. Macromolecules, 2018,51:1308-1313. doi: 10.1021/acs.macromol.7b02715

    16. [16]

      Ren G J, Miao Y Y, Qiao L J. Toughening of Amorphous Poly(Propylene Carbonate) by Rubbery CO2-Based Polyurethane:Transition from Brittle to Ductile[J]. RSC Adv, 2015,5:49979-49986. doi: 10.1039/C5RA07142A

    17. [17]

      Qin Y S, Wang X H. Carbon Dioxide-Based Copolymers:Environmental Benefits of PPC, an Industrially Viable Catalyst[J]. Biotechnol J, 2010,5:1164-1180. doi: 10.1002/biot.201000134

    18. [18]

      GAO Fengxiang, ZHOU Qinghai, QIN Yusheng, et al. Preparation of Carbon Dioxide-Propylene Oxide Copolymer Foam: CN, 103304977.A[P]. 2013-09-18(in Chinese).

    19. [19]

      Liu Z R, Hu J J, Gao F X. Biodegradable and Resilient Poly(propylene carbonate) Based Foam from High Pressure CO2 Foaming[J]. Polym Degrad Stabil, 2019,165:12-19. doi: 10.1016/j.polymdegradstab.2019.04.019

    20. [20]

      ZHOU Qinghai, WANG Xianhong, GAO Fengxiang, et al. Fabrication of Full Biodegradable Films Based on Polypropylene Carbonate: CN, 101402789.2009-04-08(in Chinese).

    21. [21]

      Muthuraj R, Mekonnen T. Recent Progress in Carbon Dioxide (CO2) as Feedstock for Sustainable Materials Development:Co-polymers and Polymer Blends[J]. Polymer, 2018,145:348-373. doi: 10.1016/j.polymer.2018.04.078

    22. [22]

      Liu S J, Wang X H. Polymers from Carbon Dioxide:Polycarbonates, Polyurethanes[J]. Curr Opin Green Sustainable Chem, 2017,3:61-66. doi: 10.1016/j.cogsc.2016.08.003

    23. [23]

      Jackson R A, Oldland S R, Pajaczkowski A. Diffusion of Additives in Polyolefins[J]. J Appl Polym Sci, 1968,12:1297-1309. doi: 10.1002/app.1968.070120603

    24. [24]

      Uhde W J, Woggon H. New Results on Migration Behavior of Benzophenone-Based UV Absorbents from Polyolefins in Foods[J]. Die Nahrung, 1976,20(2):185-194. doi: 10.1002/food.19760200212

    25. [25]

      Li C F, Li Y, Chen Z L. Simultaneous Determination of Migration Amounts of Antioxidants and Ultraviolet Absorbents Byhighperformance Liquid Chromatographyin Food Contact Materials[J]. Chinese J Chromatogr, 2014,6:616-622.

    26. [26]

      Lin Q B, Liang X Z, Su Q Z. Effect of Graphene on the Migration of Two Ultraviolet Absorbents from Graphene-LDPE Composite Films into a Fatty Food Simulant[J]. Food Packaging Shelf, 2017,12:9-15. doi: 10.1016/j.fpsl.2017.01.008

    27. [27]

      Bailey D, Tirrell D, Pinazzi C. Polymers of 2, 4-Dihydroxy-4'-vinylbenzophenone, New Polymeric Ultraviolet Absorbers[J]. Macromolecules, 1978,11(2):312-320. doi: 10.1021/ma60062a006

    28. [28]

      Parmar R J, Saxena S, Parmar J S. Copolymerization of UV-Absorbers, II[J]. Angew Makromol Chem, 1998,259:1-5. doi: 10.1002/(SICI)1522-9505(19981001)259:1<1::AID-APMC1>3.0.CO;2-6

    29. [29]

      LI Hua, ZHEN Yubin, WANG Lin. Study on Synthesis of Polymeric Ultraviolet Absorber I. Emulsion Polymerization of Acrylate Containing 2-Hydroxy-4-Acryloyloxbenzonphenone[J]. China Synth Resin Plast, 2004,2:56-58, 70. doi: 10.3969/j.issn.1002-1396.2004.02.014

    30. [30]

      Liu N, Pan J Q, Lau W W Y. Preparations and Properties of New Monomeric Light Stabilizers[J]. Polym Degrad Stabil, 1999,63(1):71-77.

    31. [31]

      ZHANG Yaming, CAI Yi, ZHOU Qinghai, et al. Preparation of a Zinc-Dicarboxylate Catalyst, Modified Zinc-Dicarboxylate Catalyst and Carbon Dioxide-Epoxy Copolymer:CN, 105418907A[P]. 2016-03-23(in Chinese).

    32. [32]

      ZHANG Mingzheng, LI Ran, HUANG Dan. Microwave Syntheses and Characterization of 1, 2-Epoxy Propyl Ether Aromatic Ketone UV Absorbents[J]. Chemistry, 2014,77(12)1201.  

    33. [33]

      ZHAO Yi, DAN Yi. Synthesis of a Reactive UV-Stabilizer and Its Application in Styrenic Polymers[J]. Polym Mater Sci Eng, 2006,5:74-77. doi: 10.3321/j.issn:1000-7555.2006.05.018

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Yuqing ZhongMengmeng JiangDeyong YangNan FengYing SunHuimin WangFeng Zhou . Nickel-catalyzed electrochemical carboxylation of propargylic esters with CO2 to 2,3-allenoic acids. Chinese Chemical Letters, 2025, 36(12): 111169-. doi: 10.1016/j.cclet.2025.111169

    4. [4]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    5. [5]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    6. [6]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    7. [7]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    8. [8]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    12. [12]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

Metrics
  • PDF Downloads(4)
  • Abstract views(1116)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return