Citation: AI Feixue, ZHAO Guiyan, BI Yanfeng, HU Yuexin. Application of Calixarene-Functionalized Nanofibers by Electrospinning[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 611-621. doi: 10.11944/j.issn.1000-0518.2019.06.190003 shu

Application of Calixarene-Functionalized Nanofibers by Electrospinning

  • Corresponding author: ZHAO Guiyan, gyzhao@lnpu.edu.cn BI Yanfeng, biyanfeng@lnpu.edu.cn
  • Received Date: 4 January 2019
    Revised Date: 20 February 2019
    Accepted Date: 22 March 2019

    Fund Project: the Scientific Research Cultivation Fund of LSHU 2016PY-014the Talent Scientific Research Fund of LSHU 2016XJJ-001Supported by the Scientific Research Cultivation Fund of LSHU(No.2016PY-014), the Talent Scientific Research Fund of LSHU(No.2016XJJ-001)

Figures(9)

  • Electrospinning technology is a simple and efficient method for preparing continuous micro-nanofibers. The nanofibers are favored by the material science community because of their unique structure size and wide applications. Calixarene and its derivatives are the third generation supramolecular host compounds, which have wide applications due to their unique molecular structure, excellent ion selective recognition and adsorption property. In this review, the principle of preparing calixarene-functionalized nanofibers by electrospinning is briefly described, and the applications as adsorbents and catalyst supports are systematically discussed. In addition, the advantages of combining electrospinning and calixarene are highlighted. At last, the challenges in calixarene-functionalized nanofibers by electrospinning are discussed, and the future development direction is prospected.
  • 加载中
    1. [1]

      Chuangchote S, Jitputti J, Sagawa T. Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers[J]. ACS Appl Mater Interfaces, 2009,1(5):1140-1143. doi: 10.1021/am9001474

    2. [2]

      Dong H, Strawhecker K E, Snyder J F. Cellulose Nanocrystals as a Reinforcing Material for Electrospun Poly(methyl methacrylate) Fibers:Formation, Properties and Nanomechanical Characterization[J]. Carbohydr Polym, 2012,87(4):2488-2495. doi: 10.1016/j.carbpol.2011.11.015

    3. [3]

      He D, Hu B, Yao Q F. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. ACS Nano, 2009,3(12):3993-4002. doi: 10.1021/nn900812f

    4. [4]

      Nasouri K, Bahrambeygi H, Rabbi A. Modeling and Optimization of Electrospun PAN Nanofiber Diameter Using Response Surface Methodology and Artificial Neural Networks[J]. J Appl Polym Sci, 2012,126(1):127-135. doi: 10.1002/app.v126.1

    5. [5]

      Wong S C, Baji A, Leng S. Effect of Fiber Diameter on Tensile Properties of Electrospun Poly(3-caprolactone)[J]. Polymer, 2008,49(21):4713-4722. doi: 10.1016/j.polymer.2008.08.022

    6. [6]

      Yang F, Murugan R, Wang S. Electrospinning of Nano/Micro Scale Poly(L-lactic acid) Aligned Fibers and Their Potential in Neural Tissue Engineering[J]. Biomaterials, 2005,26(15):2603-2610. doi: 10.1016/j.biomaterials.2004.06.051

    7. [7]

      Niu H T, Zhang J, Xie Z L. Preparation, Structure and Supercapacitance of Bonded Carbon Nanofiber Electrode Materials[J]. Carbon, 2011,49(7):2380-2388. doi: 10.1016/j.carbon.2011.02.005

    8. [8]

      Jo E, Yeo J G, Kim D K. Preparation of Well-Controlled Porous Carbon Nanofiber Materials by Varying the Compatibility of Polymer Blends[J]. Polym Int, 2014,63(8):1471-1477. doi: 10.1002/pi.2014.63.issue-8

    9. [9]

      Yang X J, Teng D H, Liu B X. Nanosizedanatase Titanium Dioxide Loaded Porous Carbon Nanofiber Webs as Anode Materials for Lithium-Ion Batteries[J]. Electrochem Commun, 2011,13(10):1098-1101. doi: 10.1016/j.elecom.2011.07.007

    10. [10]

      Yao Y C, Wu H L, Huang L. Nitrogen-Enriched Hierarchically Porous Carbon Nanofiber Network as a Binder-Free Electrode for High-Performance Supercapacitors[J]. Electrochim Acta, 2017,246:606-614. doi: 10.1016/j.electacta.2017.06.094

    11. [11]

      Tran C, Kalra V. Fabrication of Porous Carbon Nanofibers with Adjustable Pore Sizes as Electrodes for Supercapacitors[J]. J Power Sources, 2013,235(4):289-296.  

    12. [12]

      Huang J N, Cao Y H, Huang Z Y. Comparatively Thermal and Crystalline Study of Poly(methyl-methacrylate)/Polyacrylonitrile Hybrids:Core-Shell Hollow Fibers, Porous Fibers, and Thin Films[J]. Macromol Mater Eng, 2016,301(11):1327-1336. doi: 10.1002/mame.v301.11

    13. [13]

      Xu W, Xia L, Zhou X H. Hollow Carbon Microfibres Fabricated Using Coaxial Centrifugal Spinning[J]. Micro Nano Lett, 2016,11(2):74-76. doi: 10.1049/mnl.2015.0346

    14. [14]

      Wu Y, Jiang Y, Shi J N. Multichannel Porous TiO2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance[J]. Small, 2017,13(22)1700129. doi: 10.1002/smll.v13.22

    15. [15]

      Eldeen A G, Barakat N A M, Khalil K A. Development of Multi-channel Carbon Nanofibers as Effective Electrosorptive Electrodes for a Capacitive Deionization Process[J]. J Mater Chem A, 2013,1(36):11001-11010. doi: 10.1039/c3ta12450a

    16. [16]

      Abeykoon N C, Bonso J S, Ferraris J P. Supercapacitor Performance of Carbon Nanofiber Electrodes Derived from Immiscible PAN/PMMA Polymer Blends[J]. RSC Adv, 2015,5(26):19865-19873. doi: 10.1039/C4RA16594B

    17. [17]

      Wei K, Kim K O, Song K H. Nitrogen- and Oxygen-Containing Porous Ultrafine Carbon Nanofiber:A Highly Flexible Electrode Material for Supercapacitor[J]. J Mater Sci Technol, 2017,33(5):424-431. doi: 10.1016/j.jmst.2016.03.014

    18. [18]

      Zhang T, Huang D Q, Yang Y. Fe3O4/Carbon Composite Nanofiber Absorber with Enhanced Microwave Absorption Performance[J]. Mater Sci Eng B, 2013,178(1):1-9.  

    19. [19]

      Li G, Xie T S, Yang S L. Microwave Absorption Enhancement of Porous Carbon Fibers Compared with Carbon Nanofibers[J]. J Phys Chem C, 2012,116(16):9196-9201. doi: 10.1021/jp300050u

    20. [20]

      He J X, Zhao S Y, Lian Y P. Graphene-Doped Carbon/Fe3O4 Porous Nanofibers with Hierarchical Band Construction as High-Performance Anodes for Lithium-Ion Batteries[J]. Electrochim Acta, 2017,229:306-315. doi: 10.1016/j.electacta.2017.01.092

    21. [21]

      Li W H, Zeng L C, Wu Y. Nanostructured Electrode Materials for Lithium-Ion and Sodium-Ion Batteries via Electrospinning[J]. Sci China Mater, 2016,59(4):287-321. doi: 10.1007/s40843-016-5039-6

    22. [22]

      Bi Y F, Du S C, Liao W P. Thiacalixarene-Based Nanoscale Polyhedral Coordination Cages[J]. Coord Chem Rev, 2014,276:61-72. doi: 10.1016/j.ccr.2014.06.011

    23. [23]

      Shi C, Zhang M, Hang X X. Assembly of Thiacalix[4]arene-Supported High-Nuclearity Cd24 Cluster with Enhanced Photocatalytic Activity[J]. Nanoscale, 2018,10(30):14448-14454. doi: 10.1039/C8NR03474E

    24. [24]

      YANG Hui, ZHANG Shaofei, CHEN Xiangli. Preparation and Gelation Behaviors of New Carboxyl Acid-Appended Calix[4]arene Derivatives[J]. Chinese J Appl Chem, 2016,33(6):633-640.  

    25. [25]

      Geng D T, Zhang M, Hang X X. A 2D Metal-Thiacalix[4]arene Porous Coordination Polymer with 1D Channels:Gas Absorption/Separation and Frequency Response[J]. Dalton Trans, 2018,47(27):9008-9013. doi: 10.1039/C8DT02089B

    26. [26]

      Nakajima L, Yusof N N M, Kobayashi T. Calixarene-Composited Host Guest Membranes Applied for Heavy Metal Ion Adsorbents[J]. Arab J Sci Eng, 2015,40(10):2881-2888. doi: 10.1007/s13369-015-1796-5

    27. [27]

      Bhatti A A, Oguz M, Yilmaz M. Magnetizing Calixarene:Azo Dye Removal from Aqueous Media by Fe3O4 Nanoparticles Fabricated with Carboxylic-Substituted Calix[4]arene[J]. J Chem Eng Data, 2017,62(9):2819-2825. doi: 10.1021/acs.jced.7b00128

    28. [28]

      Kamboh M A, Ibrahim W A W, Nodeh H R. Removal of Selected Organophosphorus Pesticides from Water Using Newly Fabricated Amino-Substituted Calixarene-Based Magnetic Sporopollenin[J]. New J Chem, 2016,40(4):3130-3138. doi: 10.1039/C5NJ02284C

    29. [29]

      Ourri B, Tillement O, Tu T. Copper Complexes Bearing NHC-Calixarene Unit:Synthesis and Application in Click Chemistry[J]. New J Chem, 2016,40(11):9477-9485. doi: 10.1039/C6NJ02089E

    30. [30]

      Göde C, Yola M L, Yılmaz A. A Novel Electrochemical Sensor Based on Calixarene Functionalized Reduced Graphene Oxide:Application to Simultaneous Determination of Fe(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) Ions[J]. J Colloid Interfacce Sci, 2017,508:525-531. doi: 10.1016/j.jcis.2017.08.086

    31. [31]

      Uyar T, Havelund R, Hacaloglu J. Functional Electrospun Polystyrene Nanofibers Incorporating α-, β-, and γ-Cyclodextrins:Comparison of Molecular Filter Performance[J]. ACS Nano, 2010,4(9):5121-5130. doi: 10.1021/nn100954z

    32. [32]

      Celebioglu A, Uyar T. Cyclodextrin Nanofibers by Electrospinning[J]. Chem Commun, 2010,46(37):6903-6905. doi: 10.1039/c0cc01484b

    33. [33]

      Yang Y, Le T, Kang F Y. Polymer Blend Techniques for Designing Carbon Materials[J]. Carbon, 2017,111:546-568. doi: 10.1016/j.carbon.2016.10.047

    34. [34]

      SUN Kang, WANG Liping. Fabrication and Properties of the Nanofibers Containing Chitosan Produced by Electrospinning[J]. Chinese J Appl Chem, 2011,28(2):123-130.  

    35. [35]

      Thenmozhi S, Dharmaraj N, Kadirvelu K. Electrospun Nanofibers:New Generation Materials for Advanced Applications[J]. Mater Sci Eng B, 2017,217:36-48. doi: 10.1016/j.mseb.2017.01.001

    36. [36]

      Li Z, Zhang J W, Yu L G. Electrospun Porous Nanofibers for Electrochemical Energy Storage[J]. J Mater Sci, 2017,52(11):6173-6195. doi: 10.1007/s10853-017-0794-2

    37. [37]

      Tao X C, Feng Q, He H. Preparation of Calixarene-PI Nanofibers and Application as a Selective Adsorbent for Heavy Metal Ions[J]. J Eng Fiber Fabr, 2018,13(1):1-8.  

    38. [38]

      GAO Chun, FANG Wei, CHEN Ming. Preparation of Amide-t-Butylcalix[8] Arene/Polyacrylonitrile Nanofibers by Electrospinning[J]. J Yangzhou Univ(Nat Sci Edit), 2012,15(4):42-45.  

    39. [39]

      SHU Ying, QIAN Chen, LIU Zhi. Adsorption Capacity of Amide-t-Butylcalix[8] Arene/Polyacrylonitrile Nanofibers for Cu2+[J]. PTCA(Part B:Chem Anal), 2017,53(11):1252-1258.  

    40. [40]

      Chen M, Wang C J, Fang W. Electrospinning of Calixarene-Functionalized Polyacrylonitrile Nanofiber Membranes and Application as an Adsorbent and Catalyst Support[J]. Langmuir, 2013,29(38):11858-11867. doi: 10.1021/la4017799

    41. [41]

      Keskinates M, Yilmaz B, Ulusu Y. Electrospinning of Novel Calixarene-Functionalized PAN and PMMA Nanofibers:Comparison of Fluorescent Protein Adsorption Performance[J]. Mater Chem Phys, 2018,205:522-529. doi: 10.1016/j.matchemphys.2017.11.055

    42. [42]

      Bayrakcı M, Özcan F, Ertul S. Synthesis of Calixamide Nanofibers by Electrospinning and Toxic Anion Binding to the Fiber Structures[J]. Tetrahedron, 2015,71(21):3404-3410. doi: 10.1016/j.tet.2015.03.090

    43. [43]

      Özcan F, Bayrakcı M, Ertul S. Synthesis and Characterization of Novel Nanofiber Based Calixarene and Its Binding Efficiency Towards Chromium and Uranium Ions[J]. J Incl Phenom Macro, 2016,85(1/2):49-58.  

    44. [44]

      Bayrakci M, Ozcan F, Yilmaz B. Electrospun Nanofibrous Polyacrylonitrile/Calixarene Mats:An Excellent Adsorbent for the Removal of Chromate Ions from Aqueous Solutions[J]. Acta Chim Slov, 2017,64(3):679-685.  

    45. [45]

      Hong G S, Wang M, Li X. Micro-Nano Structure Nanofibrous P-Sulfonatocalix[8]arene Complex Membranes for Highly Efficient and Selective Adsorption of Lanthanum(Ⅲ) Ions in Aqueous Solution[J]. RSC Adv, 2015,5(27):21178-21188. doi: 10.1039/C5RA02423D

    46. [46]

      Hua W K, Wang M, Li P Y. Sulfonylcalix[4]arene Functionalized Nanofiber Membranes for Effective Removal and Selective Fluorescence Recognition of Terbium(Ⅲ) Ions[J]. New J Chem, 2018,42(8):6191-6202. doi: 10.1039/C8NJ00045J

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Dan PENGHao WANGYanyan WANGHongpeng YOUWuping LIAO . Synthesis and fluorescent properties of a one-dimensional Tb-calixarene complex as a luminescent thermometer material. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1859-1866. doi: 10.11862/CJIC.20250128

    5. [5]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    8. [8]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    9. [9]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    20. [20]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

Metrics
  • PDF Downloads(3)
  • Abstract views(830)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return