Citation: YU Huifa, CHEN Chonglai, WANG Yuejuan, LUO Mengfei. Ozone Decomposition over NiO/Mn3O4 Monolithic Catalysts[J]. Chinese Journal of Applied Chemistry, ;2019, 36(6): 698-703. doi: 10.11944/j.issn.1000-0518.2019.06.180328 shu

Ozone Decomposition over NiO/Mn3O4 Monolithic Catalysts

  • Corresponding author: LUO Mengfei, mengfeiluo@zjnu.cn
  • Received Date: 12 October 2018
    Revised Date: 12 December 2018
    Accepted Date: 23 January 2019

Figures(5)

  • A series of NiO/Mn3O4 monolithic catalysts with different NiO contents was prepared by ball-milling of Ni(NO3)2·6H2O, Mn3O4 and pseudo boehmite precusors via subsequent impregnation with cordierite, followed by calcination. These catalysts were tested for ozone decomposition. It was found that the 30NiO/Mn3O4(mass fraction of NiO in total mass is 30%) catalyst has the highest activity at a space velocity of 20000 h-1, and leads to 98% conversion of ozone, while the catalyst remains stable. When the space velocity is increased to 40000 h-1, the 50NiO/Mn3O4(mass fraction of NiO in total mass is 50%) catalyst gives the highest activity, with a ozone conversion at about 90%. But the catalyst suffers deactivation. Characterizations by X-ray diffraction(XRD), TPR, XPS and BET reveal that the presence of Mn3O4 in the NiO increases the specific surface area of the catalyst, and electronic interaction between Mn3O4 and NiO. Meanwhile, the co-presence of Mn3O4 and NiO in the catalyst results in facile reduction of these oxides. This synergy is believed to be responsible for the enhanced catalytic performance.
  • 加载中
    1. [1]

      FU Jiayuan, FENG Yijun, ZHONG Bing. Description of Catalytic Decomposition Ozone Methods and Properties of Catalysts[J]. Sichuan Environ, 2001,20(1):35-39. doi: 10.3969/j.issn.1001-3644.2001.01.010

    2. [2]

      ZHOU Min, HE Bingyu, CAI Xiaowei. Preparation and Properties of Au/TiO2 Ozone Decomposition Catalysts[J]. Chem Manage, 2015(3):70-71. doi: 10.3969/j.issn.1008-4800.2015.03.063

    3. [3]

      WANG Xiumin. Be Wary of Chronic Occupational Hazards Caused by Ozone[J]. Occup Hea, 1988,4:39-40.  

    4. [4]

      JIANG Qingyuan. Ozone Harm and Protection[J]. Environ Technol, 1986,3:32-34.  

    5. [5]

      REN Guizheng. Protection of High Altitude Ozone Layer and Harm of Low Altitude Ozone[J]. Chinese J Environ Manage, 2002,3:43-44.  

    6. [6]

      LIU Chang'an, SUN Dezhi, LI Wei. Study on Treatment of Ozone Tail Gas by Catalytic Decomposition[J]. Environ Protect Sci, 2003,29(5):1-3. doi: 10.3969/j.issn.1004-6216.2003.05.001

    7. [7]

      ZHANG Jingjie, ZHANG Pengyi, ZHANG Bo. Activated Carbon Supported by Gold Catalyzed Decomposition of Low Concentration Ozone in Air[J]. J Catal, 2008,29(4):335-340. doi: 10.3321/j.issn:0253-9837.2008.04.006

    8. [8]

      SUN Qingping, WU Jianping. Preliminary Exploration of Ozone Removal by Metal Oxide Catalyst[J]. Environ Pollut Prevent, 2002,24(1):32-33. doi: 10.3969/j.issn.1001-3865.2002.01.012

    9. [9]

      GU Yulin, LIU Shuwen, XU Xianlun. Preparation and Properties of Ozone Decomposition Catalysts[J]. Ind Catal, 2002,10(6):39-42. doi: 10.3969/j.issn.1008-1143.2002.06.010

    10. [10]

      LIU Chang'an, YANG Dehua, SUN Dezhi. Preparation and Characterization of Catalysts for Ozone Tail Gas Treatment[J]. J Nat Sci Harbin Normal Univ, 2001,17(6):64-67.  

    11. [11]

      Dhandapani B, Oyama S T. Gas Phase Ozone Decomposition Catalysts[J]. Appl Catal B:Environ, 1997,11(2):129-166. doi: 10.1016/S0926-3373(96)00044-6

    12. [12]

      LI Wei, SUN Dezhi, LIU Chang'an. Study on the Decomposition of Ozone by Activated Carbon Supported Composite Catalyst[J]. J Harbin Inst Technol, 2004,36(5):624-626. doi: 10.3321/j.issn:0367-6234.2004.05.017

    13. [13]

      CHEN Yepu, JIANG Aili, TANG Guixia. Study on Catalytic Decompositon of Ozone[J]. Ind Catal, 2006,14(5):52-55. doi: 10.3969/j.issn.1008-1143.2006.05.012

    14. [14]

      LIU Chang'an, SUN Dezhi, LI Wei. Study on Treatment of Ozone Tail Gas by Catalytic Decomposition[J]. Environ Protect Sci, 2003,29(119):1-3.  

    15. [15]

      Tang W, Deng Y, Li W. Importance of Porous Structure and Synergistic Effect on the Catalytic Oxidation Activities over Hierarchical Mn-Ni Composite Oxides[J]. Catal Sci Technol, 2015,6(6):1710-1718.  

    16. [16]

      LI Qiurong, WU Jinbao, HAO Jiming. Promotion of NiO/Al2O3 Adsorption of NOX by Low Temperature Plasma Treatment[J]. Chinese J Catal, 2011,32(4):572-581.  

    17. [17]

      Tang W, Li J, Wu X. Limited Nanospace for Growth of Ni-Mn Composite Oxide Nanocrystals with Enhanced Catalytic for Deep Oxidation of Benzene[J]. Catal Today, 2015,258(12):148-155.  

    18. [18]

      Tang W, Deng Y, Li W. Importance of Porous Structure and Synergistic Effect on the Catalytic Oxidation Activities over Hierarchical Mn-Ni Composite Oxides[J]. Catal Sci Technol, 2015,6(6):1710-1718.  

    19. [19]

      ZHANG Zhaoyan, WANG Ying, LI Xian. Synergistic Effect of Gold Palladium Bimetal Catalyst in Sodium Benzoate Oxidation by Benzyl Alcohol[J]. Chinese J Catal, 2014,35(11):1846-1857.  

    20. [20]

      Wang C, Ma J, Liu F. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide(OMS-2) Catalyst[J]. J Phys Chem C, 2015,119(40):23119-23126. doi: 10.1021/acs.jpcc.5b08095

    21. [21]

      Batakliev T T, Georgiev V F, Karakashkova P A. Gas Phase Ozone Decomposition over Co-Precipitated Ni-Based Catalysts[J]. Bull Chem Commun, 2017,49(special issue L):24-29.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    7. [7]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(1)
  • Abstract views(1002)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return