Citation: WANG Meng, WANG Yan, WEI Dequan, LIANG Lanju, WANG Yueping, ZHANG Bin. Influence of Pinecone-Like Ferric Oxide on the Electro-Optical Properties of Nematic Liquid Crystals[J]. Chinese Journal of Applied Chemistry, ;2019, 36(5): 578-584. doi: 10.11944/j.issn.1000-0518.2019.05.180297 shu

Influence of Pinecone-Like Ferric Oxide on the Electro-Optical Properties of Nematic Liquid Crystals

  • Corresponding author: WANG Meng, 18863278266@139.com WANG Yan, zzxygdwm@163.com
  • Received Date: 10 September 2018
    Revised Date: 7 October 2018
    Accepted Date: 29 November 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.61701434, No.61735010, No.61675147), the Natural Science Foundation of Shandong Province, China(No.ZR2017MF005, No.ZR2018LF001), the Science and Technology Development Planning Project of Zaozhuang(No.2017GX06)the Science and Technology Development Planning Project of Zaozhuang 2017GX06the National Natural Science Foundation of China 61735010the National Natural Science Foundation of China 61701434the National Natural Science Foundation of China 61675147the Natural Science Foundation of Shandong Province, China ZR2017MF005the Natural Science Foundation of Shandong Province, China ZR2018LF001

Figures(5)

  • Liquid crystal(LC) materials are widely used in LC displays(LCD). However, due to the presence of impurities in liquid crystal, the application voltage of liquid crystal becomes large, which results in the increase of energy consumption. In order to decrease the threshold voltage and saturation voltage, nanoparticles are usually added to LC to improve the electro-optical performance. In this paper, pinecone-like ferric oxide(P-Fe2O3) nanoparticles with uniform shape and size were prepared by a simple chemical precipitation method. Nematic liquid crystal 4-cyano-4'-pentylbiphenyl(5CB) is doped with pinecone-like Fe2O3 nanoparticles in different doping contents. The results show that the best electro-optical properties of the LC is achieved when the doping mass fraction is 0.5%. The threshold voltage and saturation voltage decrease by 24.8% and 45.2%, respectively, the contrast ratio increases by 46%, and the response time decreases to 17.6 ms. The property is superior to the ordinary Fe2O3 nanoparticles doped in 5CB with the threshold voltage and saturation voltage decreased by 15% and 16% under the same condition, which is attributed to the uniform dispersion of pinecone-like Fe2O3 in nematic LC 5CB and the adsorption of impurity ions by the rough surface of pinecone-like Fe2O3 abating the shielding effect.
  • 加载中
    1. [1]

      Bremer M, Tarumi K. Gas Phase Molecular Modeling of Liquid Crystals:Electro-Optical Anisotropies[J]. Adv Mater, 1993,5(11):842-848.  

    2. [2]

      Xu L, Zhao D, Li Y. Improvement of the Electro-Optical Properties of Nematic Liquid Crystals by Doping with ZIF-8 Materials[J]. Acta Phys-Chim Sin, 2016,32(9):2377-2382.  

    3. [3]

      XU Lihong, ZHAO Dongyu, LIU Bin. Effects of Ni Particles with Different Morphologies on Electro-Optical Properties of Nematic Liquid Crystal[J]. J Beijing Univ Aeronaut Astronaut, 2016,42(2):400-405.  

    4. [4]

      Hsu C C, Chen Y X, Li H W. Low Switching Voltage ZnO Quantum Dots Doped Polymer-Dispersed Liquid Crystal film[J]. Opt Express, 2016,24(7):7063-7068. doi: 10.1364/OE.24.007063

    5. [5]

      Koenig G M, Meli M V, Park J S. Coupling of the Plasmon Resonances of Chemically Functionalized Gold Nanoparticles to Local Order in Thermotropic Liquid Crystals[J]. Chem Mater, 2007,19(5):1053-1061. doi: 10.1021/cm062438p

    6. [6]

      Zhao D, Peng Y, Xu L. Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin[J]. ACS Appl Mater Interfaces, 2015,7(42):23418-23422. doi: 10.1021/acsami.5b08924

    7. [7]

      Mirzaei J, Urbanski M, Yu K. Nanocomposites of a Nematic Liquid Crystal Doped with Magic-Sized CdSe Quantum Dots[J]. J Mater Chem, 2011,21(34):12710-12716. doi: 10.1039/c1jm11832c

    8. [8]

      Al-Zangana S, Iliut M, Turner M. Properties of a Thermotropic Nematic Liquid Crystal Doped with Graphene Oxide[J]. Adv Opt Mater, 2016,4(10):1541-1548. doi: 10.1002/adom.v4.10

    9. [9]

      Urbanski M, Lagerwall J P F. Nanoparticles Dispersed in Liquid Crystals:Impact on Conductivity, Low-Frequency Relaxation and Electro-Optical Performance[J]. J Mater Chem C, 2016,4(16):3485-3491. doi: 10.1039/C6TC00659K

    10. [10]

      Sun J, Yu L, Wang L. Optical Intensity-Driven Reversible Photonic Bandgaps in Self-organized Helical Superstructures with Handedness Inversion[J]. J Mater Chem C, 2017,5(15):3678-3683. doi: 10.1039/C7TC00534B

    11. [11]

      Bisoyi H K, Li Q. Light-Driven Liquid Crystalline Materials:From Photo-Induced Phase Transitions and Property Modulations to Applications[J]. Chem Rev, 2016,116(24):15089-15166. doi: 10.1021/acs.chemrev.6b00415

    12. [12]

      Ye W, Yuan R, Dai Y. Improvement of Image Sticking in Liquid Crystal Display Doped with γ-Fe2O3 Nanoparticles[J]. Nanomaterials, 2018,8(1):1-13.  

    13. [13]

      Yadav S P, Pande M, Manohar R. Applicability of TiO2 Nanoparticle Towards Suppression of Screening Effect in Nematic Liquid Crystal[J]. J Mol Liq, 2015,208(1):34-37.  

    14. [14]

      Zhao D, Huang W, Cao H. Homeotropic Alignment of Nematic Liquid Crystals by a Photocross-Linkable Organic Monomer Containing Dual Photofunctional Groups[J]. J Phys Chem B, 2009,113(10):2961-2965. doi: 10.1021/jp8101089

    15. [15]

      Zamora-Ledezma C, Blanc C, Maugey M. Anisotropic Thin Films of Single-Wall Carbon Nanotubes from Aligned Lyotropic Nematic Suspensions[J]. Nano Lett, 2008,8(12):4103-4107. doi: 10.1021/nl801525x

    16. [16]

      Nishida N, Shiraishi Y, Kobayashi S. Fabrication of Liquid Crystal Sol Containing Capped Ag-Pd Bimetallic Nanoparticles and Their Electro-Optic Properties[J]. J Phys Chem C, 2008,112(51):20284-20290. doi: 10.1021/jp807723j

    17. [17]

      Chandran A, Prakash J, Naik K. Preparation and Characterization of MgO Nanoparticles/Ferroelectric Liquid Crystal Composites for Faster Display Devices with Improved Contrast[J]. J Mater Chem C, 2014,2(10):1844-1853. doi: 10.1039/c3tc32017k

    18. [18]

      Lee H M, Chung H K, Park H G. Nickel Oxide Nanoparticles Doped Liquid Crystal System for Superior Electro-Optical Properties[J]. J Nanosci Nanotechnol, 2015,15(10):8139-8143.  

    19. [19]

      LIU Fashun, CUI Xiaopeng, ZHAO Dongyu. Electro-Optical Properties of Smectic Liquid Crystal Display Doped with Cu2O Nanoparticles[J]. J South China Norm Univ, 2017,49(1):35-39.  

    20. [20]

      Sharma M, Sinha A, Shenoy M R. Effect of TiO2 Nanoparticle Doping on the Performance of Electrically-Controlled Nematic Liquid Crystal Core Waveguide Switch[J]. Opt Mater, 2015,49(32):292-296.  

    21. [21]

      Flak D, Chen Q L, Mun B S. In Situ Ambient Pressure XPS Observation of Surface Chemistry and Electronic Structure of alpha-Fe2O3 and gamma-Fe2O3 Nanoparticles[J]. Appl Surf Sci, 2018,455:1019-1028. doi: 10.1016/j.apsusc.2018.06.002

    22. [22]

      Reddy M V, Yu T, Sow C H. α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries[J]. Adv Funct Mater, 2007,17(15):2792-2799. doi: 10.1002/(ISSN)1616-3028

  • 加载中
    1. [1]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    2. [2]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    3. [3]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Ning LiuMan TianYe ZhangJinming YangZhihao WangWangxi DaiGuixiang QuanJianqiu LeiXiaodong ZhangLiang Tang . Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chinese Chemical Letters, 2025, 36(12): 111063-. doi: 10.1016/j.cclet.2025.111063

    14. [14]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(5)
  • Abstract views(796)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return