Citation: LI Xiancai, TIAN Minglei, CHENG Yuwen, WANG Xiu. Preparation and Characterization of Yb Ion-Imprinted Polymers Based on MCM-41 Molecular Sieve Surface[J]. Chinese Journal of Applied Chemistry, ;2019, 36(2): 203-211. doi: 10.11944/j.issn.1000-0518.2019.02.180110 shu

Preparation and Characterization of Yb Ion-Imprinted Polymers Based on MCM-41 Molecular Sieve Surface

  • Corresponding author: LI Xiancai, xcli@ncu.edu.cn
  • Received Date: 13 April 2018
    Revised Date: 24 August 2018
    Accepted Date: 7 September 2018

    Fund Project: the National Natural Science Foundation of China 51664042Supported by the National Natural Science Foundation of China(No.51664042)

Figures(7)

  • By ion-imprinting technology, 3-chloropropyltriethoxysilane as anchor, functional monomer linear polyethyleneimine(PEI) was grafted on the surface of MCM-41 molecular sieve. With Yb ions as template ions, and epichlorohydrin as cross-linking agent, a Yb(Ⅲ) ion-imprinted polymer(IIP), Yb(Ⅲ)-IIP-PEI/MCM-41, was prepared on MCM-41 surface. A non-ion-imprinted polymer(NIP-PEI/MCM-41) was prepared via similar process. Yb3+ imprinted polymer was characterized by infrared spectroscopy and scanning electron microscopy. The optimal adsorption conditions and selective adsorption performance of Yb(Ⅲ)-IIP-PEI/MCM-41 for Yb3+ were determined by static adsorption method. The maximum adsorption capacities of Yb(Ⅲ)-IIP-PEI/MCM-41 and NIP-PEI/MCM-41 are 229.93 mg/g and 99.27 mg/g, respectively. The adsorption of Yb3+ by the imprinted material is conformed to the Langmuir model; The equilibrium can basically be reached in 40 min, and the adsorption process can be described using the pseudo-second-order kinetic model. Yb(Ⅲ)-IIP-PEI/MCM-41 has strong selectivity toward Yb3+ and also has good recyclability. This adsorbent with high adsorption capacity and high selectivity for rare earth Yb ions combining the advantages of MCM-41 and ion-imprinted polymer thus-prepared lays the foundation for further application in the separation and recovery of low-concentration earth elements from wastewater.
  • 加载中
    1. [1]

      LI Xizhong, SUN Yanping. Assembly and Characterization of Inorganic-Organic Hybrid Mesoporous Materials[J]. J Taiyuan Univ Technol, 2007,38(4):316-319. doi: 10.3969/j.issn.1007-9432.2007.04.010

    2. [2]

      LAI Xiaoqi, YANG Yuanqi, XUE Jun. Preparation and Properties of Iridium(Ⅲ) Ion Imprinted Polymers[J]. Acta Chim Sin, 2009,67(8):863-868. doi: 10.3321/j.issn:0567-7351.2009.08.025

    3. [3]

      Kala R, Biju V M, Rao T P. Synthesis, Characterization, and Analytical Applications of Erbium(Ⅲ) Ion Imprinted Polymer Particles Prepared via γ-Irradiation with Different Functional and Crosslinking Monomers[J]. Anal Chim Acta, 2005,549:51-58. doi: 10.1016/j.aca.2005.06.024

    4. [4]

      Kala R, Gladis J M, Rao T P. Preconcentrative Separation of Erbium from Y, Dy, Ho, Tb and Tm by Using Ion Imprinted Polymer Particles via Solid Phase Extraction[J]. Anal Chim Acta, 2004,518:143-150. doi: 10.1016/j.aca.2004.05.029

    5. [5]

      WU Xinhua, SHI Hui, YANG Xiaoyu. Progress in Separation and Enrichment of Trace Metal Ions by Surface Imprinting Technique[J]. Guangzhou Chem Ind, 2015,3:10-12.  

    6. [6]

      Guo J J, Cai J B, Su Q D. Ion Imprinted Polymer Particles of Neodymium:Synthesis, Characterization and Selective Recognition[J]. J Rare Earth, 2009(27):22-27.  

    7. [7]

      Yang X L, Zhang J W. Recovery of Rare Earth from Ion-adsorption Rare Earth Ores with a Compound Lixiviant[J]. Sep Purif Technol, 2015(142):203-208.  

    8. [8]

      LI Xiancai, TIAN Minglei, CHENG Yuwen. Preparation and Properties of Lanthanum Ion MCM-41 Imprinted Polymer[J]. J Nanchang Univ(Eng Tech Edit), 2018,40(4):307-310.  

    9. [9]

      LIU Zhigang, WANG Jiangang, YU Shihua. Preparation of MCM-41 and Its Application in the Sustained Release of Piracetam[J]. Chem Ind Technol, 2013,6:42-44.  

    10. [10]

      WANG Huanlong. Synthesis and Properties of MCM-41 Molecular Sieve[D]. Inner Mongolia University Science Technology, 2012(in Chinese). 

    11. [11]

      Wang W, Li Y, Gao B. Effective Removal of Fe(Ⅱ) Impurity from Rare Earth Solution Using Surface Imprinted Polymer[J]. Chem Eng Res Des, 2013,91:2759-2764. doi: 10.1016/j.cherd.2013.05.006

    12. [12]

      An F, Gao B, Feng X. Adsorption and Recognizing Ability of Molecular Imprinted Polymer MIP-PEI/SiO2Towards Phenol[J]. J Hazard Mater, 2008,157(2):286-292.  

    13. [13]

      Sarri S, Misaelides P, Zamboulis D. Rhenium(Ⅶ) and Technetium(Ⅶ) Separation from Aqueous Solutions Using a Polyethylenimine-Epichlorohydrin Resin[J]. J Radioanal Nucl Chem, 2015,307(1):681-689.

    14. [14]

      Liao S, Zhang W, Wei L. Adsorption Characteristics, Recognition Properties, and Preliminary Application of Nordihydroguaiaretic Acid Molecularly Imprinted Polymers Prepared by Sol-gel Surface Imprinting Technology[J]. Appl Surf Sci, 2016,364:579-588. doi: 10.1016/j.apsusc.2015.12.184

    15. [15]

      Fasihi J, Shamsipur M, Khanchi A. Imprinted Polymer Grafted from Silica Particles for On-line Trace Enrichment and ICP OES Determination of Uranyl Ion[J]. Microchem J, 2015,126:316-321.  

    16. [16]

      An F, Gao B, Huang X. Selectively Removal of Al(Ⅲ) from Pr(Ⅲ) and Nd(Ⅲ) Rare Earth Solution Using Surface Imprinted Polymer[J]. React Funct Polym, 2013,73(1):60-65. doi: 10.1016/j.reactfunctpolym.2012.08.022

    17. [17]

      Wu H, Qiu J. Adsorption Performance for Bromine Ion Using Bromide Ion-Lanthanum Nitrate Modified Chitosan Imprinted Polymer[J]. Anal Methods-UK, 2014,6(6):1890-1896. doi: 10.1039/C3AY40687C

    18. [18]

      Li C X, Pan J M, Gao J. An Ion-imprinted Polymer Supported by Attapulgite with a Chitosan Incorporated Sol-gel Process for Selective Separation of Ce(Ⅲ)[J]. Chinese Chem Lett, 2009,20(8):985-989. doi: 10.1016/j.cclet.2009.03.020

    19. [19]

      CHEN Rui. Preparation of SBA-15 Surface Ion-Imprinted Polymer and Its Selective Separation of Medium and Low-level Radioactive Metals[D]. Jiangsu University of Science and Technology, 2014(in Chinese). 

    20. [20]

      Gao B, Zhang Y, Xu Y. Study on Recognition and Separation of Rare Earth Ions at Picometre Scale by Using Efficient Ion-Surface Imprinted Polymer Materials[J]. Hydrometallurgy, 2014,150:83-91. doi: 10.1016/j.hydromet.2014.09.017

    21. [21]

      Kameda T, Umetsu M, Kumagai S. New Principals on the Adsorption of Alkyl Compound by Mg-Al Oxide:Adsorption Kinetics and Equilibrium Studies[J]. Colloid Surf A, 2017,513:348-354. doi: 10.1016/j.colsurfa.2016.10.063

    22. [22]

      Kameda T, Shinmyou T, Yoshioka T. Kinetics and Equilibrium Studies on the Uptake of Nd3+ by Zn-Al Layered Double Hydroxide Intercalated with Triethylenetetramine-Hexaacetic Acid[J]. Mater Chem Phys, 2017,191:96-98. doi: 10.1016/j.matchemphys.2017.01.050

    23. [23]

      Adebisi G A, Alaba P A. Equilibrium, Kinetic, and Thermodynamic Studies of Lead Ion and Zinc Ion Adsorption from Aqueous Solution onto Activated Carbon Prepared from Palm Oil Mill Effluent[J]. J Clean Prod, 2017,148:958-968. doi: 10.1016/j.jclepro.2017.02.047

    24. [24]

      Asuquo E, Martin A, Nzerem P. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) Ions from Aqueous Solutions Using Mesoporous Activated Carbon Adsorbent:Equilibrium, Kinetics and Characterisation Studies[J]. J Environ Chem Eng, 2017,5(1):679-698. doi: 10.1016/j.jece.2016.12.043

    25. [25]

      Maneechakr P, Karnjanakom S. Adsorption Behaviour of Fe(Ⅱ) and Cr(Ⅵ) on Activated Carbon:Surface Chemistry, Isotherm, Kinetic and Thermodynamic Studies[J]. J Chem Thermodyn, 2017,106:104-112. doi: 10.1016/j.jct.2016.11.021

    26. [26]

      Badawi M A, Negm N A, Abou Kana M T H. Adsorption of Aluminum and Lead from Wastewater by Chitosan-Tannic Acid Modified Biopolymers:Isotherms, Kinetics, Thermodynamics and Process Mechanism[J]. Int J Biol Macromol, 2017,99:465-476. doi: 10.1016/j.ijbiomac.2017.03.003

  • 加载中
    1. [1]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    9. [9]

      Wen Tang Luyu Sui Qian Chen Jun Shao Xinwen Peng Jianwen Jiang Shuiliang Chen . Project-based Teaching of “the Condensed State of Polymers”: Unveiling the Lithium-Ion Battery Separator. University Chemistry, 2025, 40(11): 115-126. doi: 10.12461/PKU.DXHX202412108

    10. [10]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    12. [12]

      Zhiming Feng Lili Wu Chengming Wang . Doubly Oxidized Carbene. University Chemistry, 2025, 40(9): 326-331. doi: 10.12461/PKU.DXHX202411008

    13. [13]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(1)
  • Abstract views(1317)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return