Citation: CHEN Lihui, WU Qiuhan, PAN Pei, SONG Zixuan, WANG Feng, DING Yu. Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1384-1390. doi: 10.11944/j.issn.1000-0518.2018.11.170407 shu

Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries

  • Corresponding author: DING Yu, dy9802@126.com
  • Received Date: 14 November 2017
    Revised Date: 8 January 2018
    Accepted Date: 7 February 2018

    Fund Project: Natural Scientific Foundation of Hubei Province T201517Supported by the National Natural Science Foundation of China(No.51402096), Natural Scientific Foundation of Hubei Province(No.T201517)the National Natural Science Foundation of China 51402096

Figures(8)

  • Spinel LiMn2O4 octahedral nanoparticles were prepared by template-directed and high temperature solid-phase methods as cathode materials for lithium-ion batteries. Their structure and electrochemical performances were investigated. The electrochemical performance results show that LiMn2O4 as lithium-ion batteries cathode displays excellent cycling stability, rate capability and high specific capacity. The initial charge-discharge specific capacities are 147 mA·h/g and 179 mA·h/g at a current density of 100 mA/g and the voltage of 2.5~4.5 V, respectively. The cathode materials retain reversible charge-discharge capacities of 180 mA·h/g and 181 mA·h/g after 50 cycles, respectively. Excellent electrochemical properties may be attributed to the octahedral LiMn2O4 structure. This method is instructive for fabrication and design of excellent electrode materials for lithium ion batteries.
  • 加载中
    1. [1]

      Sheng T, Xu Y F, Jiang Y X. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage[J]. Acc Chem Res, 2016,49(11):2569-2577. doi: 10.1021/acs.accounts.6b00485

    2. [2]

      Yu L, Wu H B, Lou X W. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications[J]. Acc Chem Res, 2017,50(2):293-301. doi: 10.1021/acs.accounts.6b00480

    3. [3]

      Hu X, Zhang W, Liu X. Cheminform Abstract:Nanostructured Mo-based Electrode Materials for Electrochemical Energy Storage[J]. Chem Soc Rev, 2015,44(8):2376-2404. doi: 10.1039/C4CS00350K

    4. [4]

      Zhang K, Han X, Hu Z. Nanostructured Mn-based Oxides for Electrochemical Energy Storage and Conversion[J]. Chem Soc Rev, 2015,44(3):699-728. doi: 10.1039/C4CS00218K

    5. [5]

      Shi Y, Peng L, Ding Y. Nanostructured Conductive Polymers for Advanced Energy Storage[J]. Chem Soc Rev, 2015,44(19):6684-6696. doi: 10.1039/C5CS00362H

    6. [6]

      Liu Z, Xu J, Chen D. Flexible Electronics Based on Inorganic Nanowires[J]. Chem Soc Rev, 2015,44(1):161-192. doi: 10.1039/C4CS00116H

    7. [7]

      Guo Z, Chen L, Wang Y. Aqueous Lithium-Ion Batteries Using Polyimide-activated Carbon Composites Anode and Spinel LiMn2O4 Cathode[J]. ACS Sustain Chem Eng, 2017,5(2):1503-1508. doi: 10.1021/acssuschemeng.6b02127

    8. [8]

      Katiyar R K, Singhal R, Asmar K. High Voltage Spinel Cathode Materials for High Energy Density and High Rate Capability Li-Ion Rechargeable Batteries[J]. J Power Sources, 2009,194(1):526-530. doi: 10.1016/j.jpowsour.2009.05.017

    9. [9]

      Yu W, Cao C, Zhang J. Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-power Cathodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2016,8(30):19567-19572. doi: 10.1021/acsami.6b06820

    10. [10]

      Warburton R E, Iddir H, Curtiss L A. Thermodynamic Stability of Low and High Index Spinel LiMn2O4 Surface Terminations[J]. ACS Appl Mater Interfaces, 2016,8(17):11108-11121. doi: 10.1021/acsami.6b01069

    11. [11]

      Marchini F, Rubi D, Pozo M D. Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines[J]. J Phys Chem C, 2016,120(29):15875-15883. doi: 10.1021/acs.jpcc.5b11722

    12. [12]

      Lu J, Zhou C, Liu Z. LiMn2O4, Cathode Materials with Large Porous Structure and Radial Interior Channels for Lithium Ion Batteries[J]. Electrochim Acta, 2016,212:553-560. doi: 10.1016/j.electacta.2016.07.013

    13. [13]

      YU Bingchuan, WU Hongte, YANG Guangzhong. High Temperature Modification of LiMn2O4 Cathode Materials for Lithium Ion Batteries[J]. Chinese J Appl Chem, 2006,23(4):378-381. doi: 10.3969/j.issn.1000-0518.2006.04.008 

    14. [14]

      Liu Z, Han K, Chenwiegart Y K. X-ray Nanotomography Analysis of the Microstructural Evolution of LiMn2O4 Electrodes[J]. J Power Sources, 2017,360:460-469. doi: 10.1016/j.jpowsour.2017.06.027

    15. [15]

      Kitta M, Kohyama M. Stability of the LiMn2O4 Surface in a LiPF6-based Non-aqueous Electrolyte Studied by In-Situ Atomic Force Microscopy[J]. Jpn J Appl Phys, 2016,55(6)065801. doi: 10.7567/JJAP.55.065801

    16. [16]

      Wang Y, Chen L, Wang Y. Cycling Stability of Spinel LiMn2O4, with Different Particle Sizes in Aqueous Electrolyte[J]. Electrochim Acta, 2015,173:178-183. doi: 10.1016/j.electacta.2015.05.051

    17. [17]

      Zhang C, Liu X, Su Q. Enhancing Electrochemical Performance of LiMn2O4 Cathode Material at Elevated Temperature by Uniform Nano-sized TiO2 Coating[J]. ACS Sustain Chem Eng, 2016,5(1):640-647.

    18. [18]

      LIU Haowen, MAI Shuai, HU Yumei. Effects of Ion Doping in Different Oxidation States on the Electrochemical Performance of LiMn2O4[J]. Chinese J Appl Chem, 2007,24(9):1066-1070. doi: 10.3969/j.issn.1000-0518.2007.09.021 

    19. [19]

      Ram P, Singhal R, Choudhary G. On the Key Role of Dy3+, in Spinel LiMn2O4, Cathodes for Li-Ion Rechargeable Batteries[J]. J Electroanal Chem, 2017,802:94-99. doi: 10.1016/j.jelechem.2017.08.052

    20. [20]

      Zhu X, Wu X, Doan T N L. Binder-free Flexible LiMn2O4/Carbon Nanotube Network as High Power Cathode for Rechargeable Hybrid Aqueous Battery[J]. J Power Sources, 2016,326:498-504. doi: 10.1016/j.jpowsour.2016.07.029

    21. [21]

      Wang J, Liu W, Liu S. Biomass Derived Fabrication of a Novel Sea Cucumber-like LiMn2O4/C Composite with a Hierarchical Porous Structure as the Cathode for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,188:645-652. doi: 10.1016/j.electacta.2015.12.053

    22. [22]

      Şeyma Karaal, Köse H, Aydin A O. The Effect of LiBF4, Concentration on the Discharge and Stability of LiMn2O4, Half Cell Li Ion Batteries[J]. Mater Sci Semicond Process, 2015,38:397-403. doi: 10.1016/j.mssp.2015.04.018

    23. [23]

      Susanto D, Kim H, Kim J Y. Effect of (Mg, Al) Double Doping on the Thermal Decomposition of LiMn2O4, Cathodes Investigated by Time-resolved X-ray Diffraction[J]. Curr Appl Phys, 2015,15:S27-S31. doi: 10.1016/j.cap.2015.01.027

    24. [24]

      Asakura D, Hosono E, Niwa H. Operando, Soft X-ray Emission Spectroscopy of LiMn2O4, Thin Film Involving Li-Ion Extraction/Insertion Reaction[J]. Electrochem Commun, 2015,50(5):93-96.

    25. [25]

      Leifer N, Schipper F, Erickson E M. Studies of Spinel-to-Layered Structural Transformations in LiMn2O4 Electrodes Charged to High Voltages[J]. J Phys Chem C, 2017,121(17):9120-9130. doi: 10.1021/acs.jpcc.7b00929

    26. [26]

      Zhu C, Nobuta A, Saito G. Solution Combustion Synthesis of LiMn2O4, Fine Powders for Lithium Ion Batteries[J]. Adv Powder Technol, 2014,25(1):342-347. doi: 10.1016/j.apt.2013.05.015

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    11. [11]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(16)
  • Abstract views(2659)
  • HTML views(1467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return