Citation: YE Lifang, WU Quanzhou. Modification of Ordered Macroporous Silica by a Functional Polymer Layer and Immobilization of Glucoamylase on the Macropore Walls[J]. Chinese Journal of Applied Chemistry, ;2018, 35(11): 1309-1316. doi: 10.11944/j.issn.1000-0518.2018.11.170371 shu

Modification of Ordered Macroporous Silica by a Functional Polymer Layer and Immobilization of Glucoamylase on the Macropore Walls

  • Corresponding author: WU Quanzhou, gzywqz@gzucm.edu.cn
  • Received Date: 18 October 2017
    Revised Date: 8 December 2017
    Accepted Date: 22 January 2018

    Fund Project: the Guangdong Province Natural Science Foundation of China 2017A030313675the Youth Elite Project of GUCM AFD015151Z1450Supported by the National Natural Science Foundation of China(No.81303199), the Guangdong Province Natural Science Foundation of China(No.2017A030313675), the Youth Elite Project of GUCM(No.AFD015151Z1450)the National Natural Science Foundation of China 81303199

Figures(9)

  • This paper presented a facile method to the modification of the three-dimensionally ordered macroporous (3DOM) SiO2 hybrids with a carboxyl functionalized polymer layer on the macropore walls. Acrylic acid and glycerol 1, 3-diglycerolate diacrylate were copolymerized to form the polymer layer in the macropores. Raman spectra, scanning electron microscopy (SEM) and BET measurements show that the prepared 3DOM SiO2@polymer composites (SiO2-COOH) have an uniform interconnected macroporous structure and the macropore walls are covered by a nanoscaled compact polymer layer. Moreover, the 3DOM SiO2-COOH has an improved mechanical strength. The 3DOM SiO2-COOH was further used as the support to immobilize glucoamylase. The results show that the immobilized enzyme homogeneously distributes in the 3DOM materials. The optimum pH of immobilized and free enzymes is both at 5, and the optimal reaction temperature is at 55℃. Michaelis constants of the immobilized enzyme and free enzyme are 3.78 g/L and 3.97 g/L, respectively. The immobilized enzyme presents higher thermal, pH, storage stabilities and higher reusability compared with the free enzyme. The results indicate that 3DOM SiO2-COOH could be a novel support for the immobilization of enzymes.
  • 加载中
    1. [1]

      Ozdural A R, Tanyolac D, Boyaci I H. Determination of Apparent Kinetic Parameters for Competitive Product Inhibition in Packed-Bed Immobilized Enzyme Reactors[J]. Biochem Eng J, 2003,14(1):27-36. doi: 10.1016/S1369-703X(02)00099-2

    2. [2]

      Yamada R, Suzuki Y, Yasuda M. Immobilization of Proteins on Synthetic Resins Using Super-critical Carbon Dioxide[J]. J Supercrit Fluids, 2016,107:566-570. doi: 10.1016/j.supflu.2015.07.016

    3. [3]

      Huttner S, Gomes M Z D V, Iancu L. Immobilisation on Mesoporous Silica and Solvent Rinsing Improve the Transesterification Abilities of Feruloyl Esterases from Myceliophthora Thermophila[J]. Bioresour Technol, 2017,239:57-65. doi: 10.1016/j.biortech.2017.04.106

    4. [4]

      Vasconcellos A D, Paula A S, Filho R A L. Synergistic Effect in the Catalytic Activity of Lipase Rhizomucor Miehei Immobilized on Zeolites for the Production of Biodiesel[J]. Micropor Mesopor Mater, 2012,163:343-355. doi: 10.1016/j.micromeso.2012.07.043

    5. [5]

      Shahrestani H, Taheri-kafrani A, Soozanipour A. Enzymatic Clarification of Fruit Juices Using Xylanase Immobilized on 1, 3, 5-Triazine-Functionalized Silica-Encapsulated Magnetic Nanoparticles[J]. Biochem Eng J, 2016,109:51-58. doi: 10.1016/j.bej.2015.12.013

    6. [6]

      Velev O D, Jede T A, Lobo R F. Porous Silica via Colloidal Crystallization[J]. Nature, 1997,389(6650):447-448.  

    7. [7]

      Pandya P H, Jasra R V, Newalkar B L. Studies on the Activity and Stability of Immobilized Alpha-Amylase in Ordered Mesoporous Silicas[J]. Micropor Mesopor Mater, 2005,77(1):67-77. doi: 10.1016/j.micromeso.2004.08.018

    8. [8]

      Yan W, Zheng X H, Min Z. Study of Immobilization of Laccase on Mesoporous Molecular Sieve MCM-41[J]. J Chem Eng Chinese Univ, 2008,22(1):83-87.  

    9. [9]

      Schroden R C, Al-daous M, Blanford C F. Optical Properties of Inverse Opal Photonic Crystals[J]. Chem Mater, 2002,14(8):3305-3315. doi: 10.1021/cm020100z

    10. [10]

      Yang J, Chen Z L, Wang H. Highly Ordered Three-Dimensional TiO2@C Nanotube Arrays as Freestanding Electrode for Sodium-Ion Battery[J]. Mater Lett, 2017,207:149-152. doi: 10.1016/j.matlet.2017.07.066

    11. [11]

      Li X, Liu Y, Deng J. Enhanced Catalytic Performance for Methane Combustion of 3DOM CoFe2O4 by Co-Loading MnOx and Pd-Pt Alloy Nanoparticles[J]. App Surf Sci, 2017,403:590-600. doi: 10.1016/j.apsusc.2017.01.237

    12. [12]

      Ye P, Wan R B, Wang X P. Quantitative Enzyme Immobilization:Control of the Carboxyl Group Density on Support Surface[J]. J Mol Catal B:Enzym, 2009,61(3/4):296-302.  

    13. [13]

      Gornowich D B, Blanchard G J. Enhancement of Enzyme Activity by Confinement in an Inverse Opal Structure[J]. J Phys Chem C, 2012,116(22):12165-12171. doi: 10.1021/jp303271n

    14. [14]

      Jiang Y, Wang Y, Wang H. Facile Immobilization of Enzyme on Three Dimensionally Ordered Macroporous Silica via a Biomimetic Coating[J]. New J Chem, 2015,39(2):978-984. doi: 10.1039/C4NJ01947D

    15. [15]

      Wu Q, Liao J, Yin Q. Synthesis, Characterization and Catalytic Activity of Ordered Macroporous Silicas Functionalized with Organosulfur Groups[J]. Mater Res Bull, 2008,43(5):1209-1217. doi: 10.1016/j.materresbull.2007.05.025

    16. [16]

      Lowe A B. Thiol-Yne Click'/Coupling Chemistry and Recent Applications in Polymer and Materials Synthesis and Modification[J]. Polymer, 2014,55(22):5517-5549. doi: 10.1016/j.polymer.2014.08.015

    17. [17]

      Heggli M, Tirelli N, Zisch A. Michael-Type Addition as a Tool for Surface functionalization[J]. Bioconjug Chem, 2003,14(5):967-973. doi: 10.1021/bc0340621

    18. [18]

      Berkel K Y, Hawker C J. Tailored Composite Polymer-Metal Nanoparticles by Miniemulsion Polymerization and Thiol-ene Functionalization[J]. J Polym Sci Polym Chem, 2010,48(7):1594-1606. doi: 10.1002/pola.v48:7

    19. [19]

      Reddy P S, Rani D J, Sulthana S. Amylases as a Tool for Industrial Application:A Review[J]. J Pure Appl Algebra, 2011,5(1):167-171.

    20. [20]

      Amirbandeh M, Taheri-kafrani A. Immobilization of Glucoamylase on Triazine-Functionalized Fe3O4/Graphene Oxide Nanocomposite:Improved Stability and Reusability[J]. Int J Biol Macromol, 2016,93:1183-1191. doi: 10.1016/j.ijbiomac.2016.09.092

    21. [21]

      Isobe N, Lee D S, Kwon Y J. Immobilization of Protein on Cellulose Hydrogel[J]. Cellulose, 2011,18(5):1251-1256. doi: 10.1007/s10570-011-9561-8

    22. [22]

      YE Shuaiguan, SUN Zuoyu, DING Yi. The Coupled Reaction of Glucose Oxidase-Per-Oxidase-o-Diansidine System for Determination of Blood-Glucose and Some Inhibitors[J]. Chem Reagent, 1986,8(5):306-309.  

    23. [23]

      Nair D P, Podgorski M, Chatani S. The Thiol-Michael Addition Click Reaction:A Powerful and Widely Used Tool in Materials Chemistry[J]. Chem Mater, 2014,26(1):724-744. doi: 10.1021/cm402180t

    24. [24]

      Gomez J L, Bodalo A, Gomez E. Immobilization of Peroxidases on Glass Beads:An Improved Alternative for Phenol Removal[J]. Enzyme Microb Technol, 2006,39(5):1016-1022. doi: 10.1016/j.enzmictec.2006.02.008

    25. [25]

      GUO Ming, YAN Bingyu, WANG Chunpeng. Preparation of Cellulose-Based Immobilized Enzyme Matrix and the Exploration of Immobilized Laccase Performance[J]. Sci Silvae Sin, 2013,49(11):122-128.  

    26. [26]

      Volokitina M V, Korzhikov-Vlakh V A, Tennikova T B. Macroporous Monoliths for Biodegradation Study of Polymer Particles Considered as Drug Delivery Systems[J]. J Pharm Biomed Anal, 2017,145:169-177. doi: 10.1016/j.jpba.2017.06.031

    27. [27]

      Gashtasbi F, Ahmadian G, Noghabi K A. New Insights into the Effectiveness of Alpha-Amylase Enzyme Presentation on the Bacillus Subtilis Spore Surface by Adsorption and Covalent Immobilization[J]. Enzyme Microb Technol, 2014,64/65:17-23. doi: 10.1016/j.enzmictec.2014.05.006

    28. [28]

      Gupta K, Jana A K, Kumar S. Solid State Fermentation with Recovery of Amyloglucosidase from Extract by Direct Immobilization in Cross Linked Enzyme Aggregate for Starch Hydrolysis[J]. Biocatal Agric Biotechnol, 2015,4(4):486-492.  

    29. [29]

      WANG Feng, LIANG Liman, GU Zhengbiao. Immobilization of Amylase on PS-TEPA and PS-PEG Resins[J]. Chinese J Appl Chem, 2008,25(11):1259-1265. doi: 10.3969/j.issn.1000-0518.2008.11.003 

  • 加载中
    1. [1]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    2. [2]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    17. [17]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(4)
  • Abstract views(1447)
  • HTML views(869)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return