Citation: CHEN Kunfeng, XUE Dongfeng. Colloidal State of Active Cation and Its Limit for Electrochemical Energy Storage[J]. Chinese Journal of Applied Chemistry, ;2018, 35(9): 1067-1075. doi: 10.11944/j.issn.1000-0518.2018.09.180164 shu

Colloidal State of Active Cation and Its Limit for Electrochemical Energy Storage

  • Corresponding author: XUE Dongfeng, dongfeng@ciac.ac.cn
  • Received Date: 9 May 2018
    Revised Date: 14 May 2018
    Accepted Date: 15 May 2018

    Fund Project: Supported by the National Natural Science Foundation of China(No.21521092), the External Cooperation Program of BIC, Chinese Academy of Sciences(No.121522KYS820150009), the Jilin Provincial Science and Technology Development Program(No.20170101092JC)the External Cooperation Program of BIC, Chinese Academy of Sciences 121522KYS820150009the National Natural Science Foundation of China 21521092the Jilin Provincial Science and Technology Development Program 20170101092JC

Figures(5)

  • Cation redox chemistry is the most important energy storage mechanism of electrochemical energy storage technology. How to utilize redox active cations efficiently and quickly is the key to the development of electrical storage technology with both high power density and high energy density. The cationic state in colloid state can form thermodynamic equilibrium state and non-equilibrium state with high reactivity and fast reaction kinetics. In this paper, the colloidal state and the electrochemical energy storage limit of redox active cations are introduced, and the energy storage mechanism and the construction of the active colloid ion electrode are described from viewpoint of thermodynamics and kinetics. Using the high specific surface area of colloid, high ion adsorption capacity, and charge ion gradient distribution, the creative colloid supercapacitor battery solves the problem that the existing electrochemical energy storage materials can not have both high energy and high power, and the new application direction of the colloid system is also opened up.
  • 加载中
    1. [1]

      Wang M, Jiang C, Zhang S. Reversible Calcium Alloying Enables a Practical Room-Temperature Rechargeable Calcium-Ion Battery with a High Discharge Voltage[J]. Nat Chem, 2018,10(6):667-672. doi: 10.1038/s41557-018-0045-4

    2. [2]

      Wang F, Borodin O, Gao T. Highly Reversible Zinc Metal Anode for Aqueous Batteries[J]. Nat Mater, 2018,17(6):543-549. doi: 10.1038/s41563-018-0063-z

    3. [3]

      Wang G, Yu M, Wang J. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes[J]. Adv Mater, 2018,30(20)1800533. doi: 10.1002/adma.v30.20

    4. [4]

      Ma Y, Chang H, Zhang M. Graphene-based Materials for Lithium-Ion Hybrid Supercapacitors[J]. Adv Mater, 2015,27(36):5296-5308. doi: 10.1002/adma.201501622

    5. [5]

      Augustyn V, Come J, Lowe M A. High-rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance[J]. Nat Mater, 2013,12(6):518-522. doi: 10.1038/nmat3601

    6. [6]

      Kim H, Cook J B, Lin H. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO3-x[J]. Nat Mater, 2017,16(5):454-460.  

    7. [7]

      Lukatskaya M, Kota S, Lin Z. Ultra-high-rate Pseudocapacitive Energy Storage in Two-Dimensional Transition Metal Carbides[J]. Nat Energy, 2017,2(8)17105. doi: 10.1038/nenergy.2017.105

    8. [8]

      Chen K, Song S, Liu F. Structural Design of Graphene for Use in Electrochemical Energy Storage Devices[J]. Chem Soc Rev, 2015,44(17):6230-6257. doi: 10.1039/C5CS00147A

    9. [9]

      Zhai T, Sun S, Liu X. Achieving Insertion-Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance[J]. Adv Mater, 2018,30(12)1706640. doi: 10.1002/adma.v30.12

    10. [10]

      Soto F, Yan P, Engelhard M H. Tuning the Solid Electrolyte Interphase for Selective Li-and Na-Ion Storage in Hard Carbon[J]. Adv Mater, 2017,29(18)1606860. doi: 10.1002/adma.201606860

    11. [11]

      Liu K, Pei A, Lee H R. Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer[J]. J Am Chem Soc, 2017,139(13):4815-4820. doi: 10.1021/jacs.6b13314

    12. [12]

      Choi J W, Aurbach D. Promise and Reality of Post-lithium-ion Batteries with High Energy Densities[J]. Nat Rev Mater, 2016,1(4)16013. doi: 10.1038/natrevmats.2016.13

    13. [13]

      Seo D, Lee J, Urban A. The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-disordered Li-Excess Cathode Materials[J]. Nat Chem, 2016,8(7):692-697. doi: 10.1038/nchem.2524

    14. [14]

      Assat G, Tarascon J. Fundamental Understanding and Practical Challenges of Anionic Redox Activity in Li-Ion Batteries[J]. Nat Energy, 2018,3:373-386. doi: 10.1038/s41560-018-0097-0

    15. [15]

      Yu M, Lin D, Feng H. Boosting the Energy Density of Carbon-based Aqueous Supercapacitors by Optimizing the Surface Charge[J]. Angew Chem Int Ed, 2017,56(20)5454. doi: 10.1002/anie.201701737

    16. [16]

      Chen K F, Xue D F. Colloidal Supercapattery:Redox Ions in Electrode and Electrolyte[J]. Chem Rec, 2018,18(3):282-292. doi: 10.1002/tcr.v18.3

    17. [17]

      Chen K F, Xue D F. Colloidal Paradigm in Supercapattery Electrode Systems[J]. Nanotechnology, 2018,29(2)024003. doi: 10.1088/1361-6528/aa9bfd

    18. [18]

      Chen K F, Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Technol Sci, 2015,58(11):1768-1778. doi: 10.1007/s11431-015-5915-z

    19. [19]

      CHEN Ke. Applications of Colloids in Glass Researches[J]. Acta Phys Sin, 2017,66(17)178201. doi: 10.7498/aps.66.178201

    20. [20]

      YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Co-transport of Colloids and Facilitated Contaminants in Subsurface Environment[J]. CIESC J, 2017,68(1):23-36.  

    21. [21]

      ZHOU Chao, WANG Wei, ZHANG Hepeng. Individual Behaviors and Dynamic Self-assembly of Active Colloids[J]. Chinese Sci Bull, 2017,62(2/3):194-208.  

    22. [22]

      LU Changyu. Performance Studies of Silica Gel Electrolytes on Rechargeable Hybrid Aqueous Batteries[D]. Xi'an: Chang'an University, 2017(in Chinese). 

    23. [23]

      Liu C, Neale Z G, Cao G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries[J]. Mater Today, 2016,19(2):109-123. doi: 10.1016/j.mattod.2015.10.009

    24. [24]

      Yoo H D, Markevich E, Salitra G. On the Challenge of Developing Advanced Technologies for Electrochemical Energy Storage and Conversion[J]. Mater Today, 2014,17(3):110-121. doi: 10.1016/j.mattod.2014.02.014

    25. [25]

      Billaud J, Eames C, Tapia-Ruiz N. Evidence of Enhanced Ion Transport in Li-Rich Silicate Intercalation Materials[J]. Adv Energy Mater, 2017,7(11)1601043. doi: 10.1002/aenm.v7.11

    26. [26]

      Lee J, Kitchaev D A, Kwon D. Reversible Mn2+/Mn4+ Double Redox in Lithium-Excess Cathode Materials[J]. Nature, 2018,556(7700):185-190. doi: 10.1038/s41586-018-0015-4

    27. [27]

      Housel L M, Wang L, Abraham A. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage[J]. Acc Chem Res, 2018,51(3):575-582. doi: 10.1021/acs.accounts.7b00478

    28. [28]

      Chen K, Xue D. Materials Chemistry Toward Electrochemical Energy Storage[J]. J Mater Chem A, 2016,4(20):7522-7537. doi: 10.1039/C6TA01527A

    29. [29]

      Schmuch R, Wagner R, Hörpel G. Performance and Cost of Materials for Lithium-based Rechargeable Automotive Batteries[J]. Nat Energy, 2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2

    30. [30]

      Chen K, Xue D. Colloidal Supercapacitor Electrode Materials[J]. Mater Res Bull, 2016,83:201-206. doi: 10.1016/j.materresbull.2016.06.013

    31. [31]

      CHEN Kunfeng, XUE Dongfeng. Colloidal Ion Supercapacitor[J]. J Electrochem, 2015,21(6):534-542.  

    32. [32]

      Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors[J]. Chem Rev, 2004,104(10):4245-4269. doi: 10.1021/cr020730k

    33. [33]

      LI Songlin, ZHOU Yaping, LIU Junji. Physical Chemistry(Fifth Edition)[M]. Beijing:Higher Education Press, 2010:324-326(in Chinese).

    34. [34]

      LU Xia, LI Hong. Fundamental Scientific Aspects of Lithium Batteries(Ⅱ)-Defect Chemistry in Battery Materials[J]. Energy Storage Sci Technol, 2013,2(2):157-164. doi: 10.3969/j.issn.2095-4239.2013.02.010

    35. [35]

      YANG Yong. Solid State Electrochemistry[M]. Beijing:Chemical Industry Press, 2017:266-302(in Chinese).

    36. [36]

      Chen K, Xue D. Nanofabrication Strategies for Advanced Electrode Materials[J]. Nanofabrication, 2017,3(1):1-15. doi: 10.2478/nanofab-2017-0028

    37. [37]

      Chen K, Xue D. Ionic Supercapacitor Electrode Materials:A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids[J]. Colloids Interface Sci Commun, 2014,1(1):39-42.  

    38. [38]

      Zhu C, Usiskin R E, Yu Y. The Nanoscale Circuitry of Battery Electrodes[J]. Science, 2017,358(6369)eaao2808. doi: 10.1126/science.aao2808

    39. [39]

      Chen C, Maie J. Decoupling Electron and Ion Storage and the Path from Interfacial Storage to Artificial Electrodes[J]. Nat Energy, 2018,3(2):102-108.  

    40. [40]

      Dubal D P, Chodankar N R, Kim D H. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics[J]. Chem Soc Rev, 2018,47(6):2065-2129. doi: 10.1039/C7CS00505A

    41. [41]

      LI Gong, CHEN Kunfeng, JIN Jingye. La3+-doped NiCo Layered Double Hydroxide Nanosheets and Their Supercapacitive Performance[J]. Chinese J Appl Chem, 2017,34(1):71-75.  

    42. [42]

      Amin R, Maier J, Balaya P. Ionic and Electronic Transport in Single Crystalline LiFePO4 Grown by Optical Floating Zone Technique[J]. Solid State Ion, 2008,179(27/32):1683-1687.  

    43. [43]

      Park M, Zhang X, Chung M. A Review of Conduction Phenomena in Li-Ion Batteries[J]. J Power Sources, 2010,195(24):7904-7929. doi: 10.1016/j.jpowsour.2010.06.060

    44. [44]

      Kaskhedikar N A, Maier J. Lithium Storage in Carbon Nanostructures[J]. Adv Mater, 2009,21(25/36):2664-2680.  

    45. [45]

      Kuhne M, Paolucci F, Popovic J. Ultrafast Lithium Diffusion in Bilayer Graphene[J]. Nat Nanotechnol, 2017,12(9):895-900. doi: 10.1038/nnano.2017.108

    46. [46]

      Liu M, Lin C, Gu Y. Oxygen Reduction Contributing to Charge Transfer During the First Discharge of the CeO2-Bi2Fe4O9-Li Battery:In Situ X-ray Diffraction and X-ray Absorption Near-Edge Structure Investigation[J]. J Phys Chem C, 2014,118(27):14711-14722. doi: 10.1021/jp4105689

    47. [47]

      Liang X, Chen K, Xue D. A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids[J]. Adv Energy Mater, 2018,81703329. doi: 10.1002/aenm.v8.16

    48. [48]

      Wang J, Polleux J, Lim J. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2(Anatase) Nanoparticles[J]. J Phys Chem C, 2007,111(40):14925-14931. doi: 10.1021/jp074464w

    49. [49]

      Mitchell J B, Lo W C, Genc A. Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide[J]. Chem Mater, 2017,29(9):3928-3937. doi: 10.1021/acs.chemmater.6b05485

    50. [50]

      CHEN Kunfeng, XUE Dongfeng. Evaluation of Special Capacitance of Colloidal Ionic Supercapacitor System[J]. Chinese J Appl Chem, 2016,33(1):8-24.  

    51. [51]

      LIANG Xitong, PAN Wei, CHEN Kunfeng. Research and Development of Novel Supercapacitors[J]. Chinese J Appl Chem, 2016,33(8):867-875.  

    52. [52]

      Chen K, Xue D. High Energy Density Hybrid Supercapacitor:In-Situ Functionalization of Vanadium-based Colloidal Cathode[J]. ACS Appl Mater Interfaces, 2016,8(43):29522-29528. doi: 10.1021/acsami.6b10638

    53. [53]

      Chen K, Xue D, Sridhar K. Colloidal Pseudocapacitor:Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources, 2015,279(1):365-371.  

    54. [54]

      Chen X, Chen K, Wang H. A Colloidal Pseudocapacitor:Direct Use of Fe(NO3)3 in Electrode Can Lead to a High Performance Alkaline Supercapacitor System[J]. J Colloid Interface Sci, 2015,444(1):49-57.  

    55. [55]

      Chen K, Yang Y, Li K. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng, 2014,2(3):440-444. doi: 10.1021/sc400338c

    56. [56]

      Chen K, Xue D. In situ Electrochemical Activation of Ni-based Colloids from an NiCl2 Electrode and Their Advanced Energy Storage Performance[J]. Nanoscale, 2016,8(39):17090-17095. doi: 10.1039/C6NR06325J

    57. [57]

      Chen K, Song S, Li K. Water-soluble Inorganic Salts with Ultrahigh Specific Capacitance:Crystallization Transformation Investigation of CuCl2 Electrodes[J]. CrystEngComm, 2013,15(47):10367-10373. doi: 10.1039/c3ce41802b

    58. [58]

      Chen K F, Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. CrystEngComm, 2014,16(21):4610-4618. doi: 10.1039/C4CE00380B

    59. [59]

      Chen K F, Xue D F. Water-soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 can be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci, 2014,416(1):172-176.  

    60. [60]

      Chen K, Xue D. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci, 2014,424(1):84-89.  

    61. [61]

      Chen K, Xue D. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci, 2014,430(1):265-271.  

    62. [62]

      Chen X, Chen K, Wang H. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. CrystEngComm, 2014,16(29):6707-6715. doi: 10.1039/c4ce00660g

    63. [63]

      Chen K, Song S, Xue D. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv, 2014,4(44):23338-23343. doi: 10.1039/c4ra03037k

    64. [64]

      Chen K, Yin S, Xue D. Binary AxB1-x Ionic Alkaline Pseudocapacitor System Involving Manganese, Iron, Cobalt, and Nickel:Formation of Electroactive Colloids via in-Situ Electric Field Assisted Coprecipitation[J]. Nanoscale, 2015,7(3):1161-1166. doi: 10.1039/C4NR05880A

    65. [65]

      Chen X, Chen K, Wang H. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta, 2014,147(1):216-224.  

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    4. [4]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    10. [10]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    16. [16]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    19. [19]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    20. [20]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(2)
  • Abstract views(1842)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return