Citation: HU Xumin, LI Guishui, CHENG Lijun, HAO Liang. Preparation and Photocatalytic Properties of Bismuth Subcarbonate Modified with Surfactants[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 692-699. doi: 10.11944/j.issn.1000-0518.2018.06.170235 shu

Preparation and Photocatalytic Properties of Bismuth Subcarbonate Modified with Surfactants

  • Corresponding author: CHENG Lijun, chenglijun@tust.edu.cn
  • Received Date: 3 July 2017
    Revised Date: 7 August 2017
    Accepted Date: 30 August 2017

    Fund Project: the Youth Innovation Foundation of Tianjin University of Science & Technology 2015LG11Supported by the Youth Innovation Foundation of Tianjin University of Science & Technology(No.2015LG11)

Figures(4)

  • Bi2O2CO3 was synthesized by surfactant-assisted hydrothermal method. The dosage of cationic surfactant cetyltrimethylammonium bromide(CTAB), nonionic surfactant polyethylene glycol 8000(PEG8000), anionic surfactant sodium dodecyl sulfate(SDS), and coupling of SDS with CTAB as well as their influences on crystal plane, morphology, photoabsorption ability and photocatalytic activity of Bi2O2CO3 photocatalyst were investigated. The photocatalytic activity was evaluated by the degradation of rhodamine B solution(10 mg/L) under ultraviolet light irradiation. The results show that when the addition of Bi2O2CO3 is 6 mmol(2.9106 g), modified Bi2O2CO3 with SDS will inhibits the photocatalytic activity. The photocatalytic activity of Bi2O2CO3 is effectively improved by addition of 0.6 g CTAB in the hydrothermal process. A totally 0.3 g of SDS and CTAB can improve the photocatalytic activity of Bi2O2CO3. Addition of 0.3 g PEG8000 also promotes the photocatalytic activity of Bi2O2CO3.
  • 加载中
    1. [1]

      DU Guojun. Preparation and Photocatalytic Properties of Titania Nanobelts Heterostructures[D]. Ji'nan: Shandong University, 2010(in Chinese).

    2. [2]

      SHEN Yufang, LONG Fei, ZOU Zhengguang. Developments of Photocatalytic Semiconductors[J]. Mater Rev, 2006,20(6):28-31.  

    3. [3]

      JIANG Dawei. Study on the Preparation of Novel Photocatalytic Nanomaterials and Their Application in Photodegradation of Environmental Pollutants[D]. Shanghai: East China Normal University, 2012(in Chinese).

    4. [4]

      YANG Juan, LI Jiantong, MIAO Juan. Visible Light Photocatalytic Performance of Bi2O3/TiO2 Nanocomposite Particles[J]. Chinese J Inorg Chem, 2011,27(3):547-555.

    5. [5]

      WANG Xiaowen. Study on the Preparation of BiOX(Cl, Br, I)/Bi2O2CO3 and Their Photocatalytic Properties[D]. Taiyuan: Taiyuan University of Technology, 2013(in Chinese).

    6. [6]

      Zhou Y, Zhao Z Y, Wang F. Facile Synthesis of Surface N-Doped Bi2O2CO3:Origin of Visible Light Photocatalytic Activity and in Situ DRIFTS Studies[J]. J Hazard Mater, 2016,307(15):163-172.

    7. [7]

      LIU Haitao. Controllable Synthesis of Nanosheet Self-assembled N-Doped Bi2O2CO3 Hierarchical Microspheres and the Visible Light Photoctalytic Properties for Degradation RhB and NO[D]. Chongqing: Chongqing Technology and Business University, 2013: 6-7(in Chinese).

    8. [8]

      FU Rongrong, LI Yanmin, GAO Shanmin. Morphology and Crystal Face Control of TiO2 Photocatalyst[J]. Chinese J Inorg Chem, 2014,30(10):2231-2245.

    9. [9]

      CHEN Hongfeng. The Hydrothermal Synthesis and Visible-light Photocatalytic Activities of the Bi2WO6 and Bi2O2CO3/Bi2WO6 with Diverse Morphologies[D]. Zhejiang: Zhejiang University of Technology, 2012(in Chinese).

    10. [10]

      HE Rong'an, CAO Shaowen, YU Jiaguo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys Chim Sin, 2016,32(12):2841-2870. doi: 10.3866/PKU.WHXB201611021

    11. [11]

      WU Chunhong, HUANG Yingping, ZHANG Yu. The Photocatalytic Activity of the Modified SDS Tungsten Bismuth Catalysts and Its Photocatalytic Oxidation Mechanism[J]. Appl Chem Ind, 2016,45(7):1209-1214, 1219.  

    12. [12]

      WANG Shulian, HE Yan, GU Yan. Preparation and Photocatalytic Properties of PEG-Bi2O2CO3 Under Visible Light Irradiation[J]. Chinese J Environ Eng, 2014,8(4):1297-1304.

    13. [13]

      ZHAO Pingge, ZHANG Gehong, ZHOU Xiaode. Study on the Morphology of Bismuth Oxide Modified with Surfactants and Its Ultrasonic Degradation Performance[J]. Acta Sci Circumst, 2016,36(8):2876-2884.  

    14. [14]

      Huang H W, Wang J J, Dong F. Highly Efficient Bi2O2CO3 Single-crystal Lamellas with Dominantly Exposed {001} Facets[J]. Cryst Growth Des, 2015,15(2):534-537. doi: 10.1021/cg501527k

    15. [15]

      WANG Wei, QIAO Xueliang, QIU Xiaolin. Influence of PEG on the Morphology of Nano-MgO Prepared by Precipitation[J]. J Synth Cryst, 2007,36(6):1399-1402.  

    16. [16]

      WEI Zhixian, OU Haifeng, GONG Xijun. Study on the Function of Additive-PEG in the preparation of Sb-doped SnO2 Nano-powder via Oxidative-Coprecipitation[J]. Chinese J Process Eng, 2005,5(3):305-308.  

    17. [17]

      Zhou D H, Li Y H, Wang J Y. Synthesis of Polyaniline Nanofibers with High Electrical Conductivity from CTAB-SDBS Mixed Surfactants[J]. Mater Lett, 2011,65(23/24):3601-3604.

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    11. [11]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    12. [12]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(8)
  • Abstract views(1863)
  • HTML views(631)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return