Citation: ZHANG Weijie, HUO Fangjun, YIN Caixia. A Coumarin Based Ratiometric Fluorescent Probe for Fast Sensing of Hypochlorite[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1457-1461. doi: 10.11944/j.issn.1000-0518.2017.12.170311 shu

A Coumarin Based Ratiometric Fluorescent Probe for Fast Sensing of Hypochlorite

  • Corresponding author: YIN Caixia, yincx@sxu.edu.cn
  • Received Date: 1 September 2017
    Revised Date: 9 October 2017
    Accepted Date: 11 October 2017

    Fund Project: the National Natural Science Foundation of China 21775096the Shanxi Province Foundation for Returnee 2012-007the National Natural Science Foundation of China 201705105the National Natural Science Foundation of China 21672131Supported by the National Natural Science Foundation of China(No.21672131, No.21775096, No.201705105), the Talents Support Program of Shanxi Province(No.2014404), the Shanxi Province Foundation for Returnee(No.2012-007)the Talents Support Program of Shanxi Province 2014404

Figures(7)

  • Hypochlorous acid(HClO) is one of the biologically important reactive oxygen species(ROS), which plays important roles in the human immune defence system, and contributes to the destruction of invading bacteria and pathogens. Here, a novel ratiometric probe for detection of hypochlorite was designed and developed based on the coumarin. The sensor shows excellent selectivity, high sensitivity(12 nmol/L) and a rapid response(within 5 s) toward hypochlorite, accompanied with an obvious color change from colorless to yellow. Other anions and ROS all triggers very minor changes. Furthermore, the sensing mechanism was confirmed by electrospray ionization-mass spectrometry(ESI-MS) and spectrometry analysis, which was based on the strong oxidized by HClO/ClO-, then hydrolyzed to generate fluorescent compound.
  • 加载中
    1. [1]

      Dickinson B C, Huynh C, Chang C J. A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells[J]. J Am Chem Soc, 2010,132(16):5906-5915. doi: 10.1021/ja1014103

    2. [2]

      Nathan C. Specificity of a Third Kind:Reactive Oxygen and Nitrogen Intermediates in Cell Signaling[J]. J Clin Invest, 2003,111:769-778. doi: 10.1172/JCI200318174

    3. [3]

      Zhu H J, Xu H D, Yan Y H. Highly Fluorescent Graphene Oxide as a Facile and Novel Sensor for the Determination of Hypochlorous Acid[J]. Sens Actuators B, 2014,202:667-673. doi: 10.1016/j.snb.2014.06.002

    4. [4]

      Yuan L, Lin W Y, Chen H. Analogs of Changsha Near-Infrared Dyes with Large Stokes Shifts for Bioimaging[J]. Biomaterials, 2013,34(37):9566-9571. doi: 10.1016/j.biomaterials.2013.08.081

    5. [5]

      Pattison D I, Davies M J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds[J]. Chem Res Toxicol, 2001,14(10):1453-1456. doi: 10.1021/tx0155451

    6. [6]

      Wei F F, Lu Y, He S. Highly Sensitive Fluorescent Chemosensor for Hypochlorite Anion Based on a Novel Irreversible Ring-Opening Strategy[J]. Anal Methods, 2012,4:616-618. doi: 10.1039/c2ay05788c

    7. [7]

      Yue Y K, Yin C X, Huo F J. The Application of Natural Drug-Curcumin in the Detection Hypochlorous Acid of Real Sample and Its Bioimaginge[J]. Sens Actuators B, 2014,202:551-556. doi: 10.1016/j.snb.2014.05.119

    8. [8]

      Wang X Z, Zhou L, Qiang F. Development of a BODIPY-based Ratiometric Fluorescent Probe for Hypochlorous Acid and Its Application in Living Cells[J]. Anal Chim Acta, 2016,911:114-120. doi: 10.1016/j.aca.2016.01.022

    9. [9]

      Yap Y W, Whiteman M, Cheung N S. Chlorinative Stress:An Underappreciated Mediator of Neurodegeneration[J]. Cell Signal, 2007,19(2):219-228. doi: 10.1016/j.cellsig.2006.06.013

    10. [10]

      Aiken M L, Painter R G, Zhou Y. Chloride Transport in Functionally Active Phagosomes Isolated from Human Neutrophils[J]. Free Radical Biol Med, 2012,53(12):2308-2317. doi: 10.1016/j.freeradbiomed.2012.10.542

    11. [11]

      Petr nio M S, Ximenes V F. Biochim. Effects of Oxidation of Lysozyme by Hypohalous Acids and Haloamines on Enzymatic Activity and Aggregation[J]. Biophys Acta, 2012,1824(10):1090-1096.

    12. [12]

      Goswami S, Maity S, Maity A C. Solvent-free Synthesis of Sulfur-and Nitrogen-co-doped Fluorescent Carbon Nanoparticles from Glutathione for Highly Selective and Sensitive Detection of Mercury(Ⅱ) Ions[J]. Sens Actuators B, 2014,204:741-747. doi: 10.1016/j.snb.2014.08.024

    13. [13]

      Chan J, Dodani S, Chang C J. Reaction-based Small-Molecule Fluorescent Probes for Chemoselective Bioimaging[J]. Nat Chem, 2012,4:973-984. doi: 10.1038/nchem.1500

    14. [14]

      Dong Y, Li J F, Jiang X X. Na+ Triggered Fluorescence Sensors for Mg2+ Detection Based on a Coumarin Salen Moiety[J]. Org Lett, 2011,13(9):2252-2255. doi: 10.1021/ol200530g

    15. [15]

      Uno S, Kamiya M, Yoshihara T. A New Fluorophore for Super-Resolution Imaging[J]. Nat Chem, 2014,6:681-689.

    16. [16]

      Yuan L, Wang L, Agrawalla B K. Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model[J]. J Am Chem Soc, 2015,137(18):5930-5938. doi: 10.1021/jacs.5b00042

    17. [17]

      Zhang W J, Yin C X, Zhang Y B. A Turn-on Fluorescent Probe Based on 2, 4-Dinitrosulfonyl Functional Group and Its Application For Bioimaging[J]. Sens Actuators B, 2016,233:307-313. doi: 10.1016/j.snb.2016.04.089

    18. [18]

      Zhang W J, Huo H J, Liu T. A Rapid and Highly Sensitive Fluorescent Imaging Materials for Thiophenols[J]. Dyes Pigm, 2016,133:248-254. doi: 10.1016/j.dyepig.2016.06.009

    19. [19]

      Xie Y S, Wei P C, Li X. Macrocycle Contraction and Expansion of a Dihydrosapphyrin Isomer[J]. J Am Chem Soc, 2013,135(51):19119-19122. doi: 10.1021/ja4112644

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    9. [9]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    16. [16]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    17. [17]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    18. [18]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(6)
  • Abstract views(1495)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return