Citation: CHEN Lidong, TONG Huan, WANG Xuyang, SONG Pengyue, LIU Di, JI Yanqing, YUE Qian, DING Wei, JIA Yixin, CHEN Yongying, JIANG Chunjie. Preparation of High Activity Oxidative Desulfurization Catalyst with Polycation and Heteropolyanion Keggin Structure[J]. Chinese Journal of Applied Chemistry, ;2017, 34(11): 1301-1306. doi: 10.11944/j.issn.1000-0518.2017.11.170011 shu

Preparation of High Activity Oxidative Desulfurization Catalyst with Polycation and Heteropolyanion Keggin Structure

  • Corresponding author: CHEN Yongying, lidongchhm0809@163.com JIANG Chunjie, jiangcj@lnnu.edu.cn
  • Received Date: 6 January 2017
    Revised Date: 6 March 2017
    Accepted Date: 14 April 2017

    Fund Project: the Research Fund for the Doctoral Program of Liaoning Province of China 20131060Supported by the Research Fund for the Doctoral Program of Liaoning Province of China(No.20131060)

Figures(5)

  • Design and development of high activity ultra-deep oxidation of desulfurization catalyst is one of the most important ways to meet the increasing stringent requirements of petrochemical industry for cleaning fuel standards in the future. Catalysts with Keggin structure aluminum hydroxide polyoxocations(Al13), Al13-SDS and HPW-Al13-SDS(HPW=Keggin structure phosphotungstic acid, SDS=sodium dodecylsulfate) were prepared. The structures of these catalysts were characterized by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), ultraviolet visible spectroscopy(UV-Vis), Brunauer-Emmett-Teller(BET) and thermogravimetry(TG). The preservation of the Keggin structure on HPW-Al13-SDS catalyst was confirmed by IR and UV-Vis spectra. Catalytic oxidation desulfurization(ODS) reaction over HPW-Al13-SDS with a model of oil(n-hexan solution of organic sulfur) was studied. In optimized condition, up to 99.5% conversion of sulfur was achieved. The efficiencies of ODS decrease from dibenzothiophene to benzothiophene. IR and XRD characterizations of HPW-Al13-SDS catalyst after the reaction show that the catalysts form peroxo-tungsten complexes. The catalytic activity of the recycled HPW-Al13-SDS is almost the same as freshly prepared, and can be recycled via easy separation. The catalyst used herein is an ideal model for ODS of organic sulfide.
  • 加载中
    1. [1]

      YU Fengli, WANG Rui. Study on Oxidative Desulfurization Catalyzed by Organic-Inorganic Heteropolyacids as Phase Transfer Catalyst[J]. Acta Chim Sin, 2014,72(1):105-113. doi: 10.7503/cjcu20130705

    2. [2]

      Li C, Jiang Z X, Gao J B. Ultra-Deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion[J]. Chem-Eur J, 2004,10(9):2277-2280. doi: 10.1002/(ISSN)1521-3765

    3. [3]

      Lv H Y, Ren W Z, Liao W P. Aerobic Oxidative Desulfurization of Model Diesel Using a B-Type Anderson Catalyst[(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Appl Catal B:Environ, 2013,138/139(1):79-83.  

    4. [4]

      CHEN Lidong, LIU Di, NIU Siqi. Oxidative Desulfurization of Organic Sulfides over Phosphotungstic Acid/Nano-ZSM-5 Composite Catalyst[J]. Chinese J Appl Chem, 2016,33(3):364-366. doi: 10.11944/j.issn.1000-0518.2016.03.150339 

    5. [5]

      Xue X L, Zhao W, Ma B C. Efficient Oxidation of Sulfides Catalyzed by a Temperature-responsive Phase Transfer Catalyst[(C18H37)2(CH3)2N]7PW11O39 with Hydrogen Peroxide[J]. Catal Commun, 2012,29(1):73-76.  

    6. [6]

      PENG Ge, HU Changwen, CHEN Lidong. Synthesis of Novel Inorganic Nanoclusters Between Keggin-type Cation[AlO4Al12(OH)24(H2O)12]7+ and Heteropolyoxometalates[J]. Chinese J Chem Univ, 2001,22(10):1629-1631. doi: 10.3321/j.issn:0251-0790.2001.10.030

    7. [7]

      Holland B T, Isbester P K, Blanford C F. Synthesis of Ordered Aluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts as Precursors[J]. J Am Chem Soc, 1997,119(29):6796-6803. doi: 10.1021/ja970823x

    8. [8]

      Son J H, Choi H, Kwon Y U. Porous Crystal Formation from Polyoxometalate Building Blocks:Single-Crystal Structure of[AlO4Al12(OH)12(H2O)24] [Al(OH)6Mo6O18]2(OH)2·29.5H2O[J]. J Am Chem So, 2000,112(30):7432-7433.  

    9. [9]

      WANG Xuyang, SONG Pengyue, WANG Xiangsheng. In-situ Characterization and Reactivity of Heteropoly Acid-based Catalysts for Deep Hydrodesulfurization of Fluid Catalytic Cracking Gasoline[J]. Chinese J Appl Chem, 2014,31(8):990-992.  

    10. [10]

      Chen L D, Wang X S, Guo X W. In Situ Nanocrystalline HZSM-5 Zeolites Encaged Heteropoly Acid H3PMo12O40 and Ni Catalyst for Hydroconversion of n-Octane[J]. Chem Eng Sci, 2007,62(16):4469-4478. doi: 10.1016/j.ces.2007.05.013

    11. [11]

      JIANG Chunjie, SUN Shengnan, WANG Xuyang. Synthesis of Dimethyl Ether from Methanol over Heteropoly Acid/Nanocrystalline HZSM-5 Complex Solid Acidic Catalyst[J]. Acta Chim Sin, 2013,71(5):810-814.  

    12. [12]

      Yu X D, Guo Y N, Xu L L. A Novel Preparation of Mesoporous CsxH3-xPW12O40/TiO2 Nanocomposites with Enhanced Photocatalytic Activity[J]. Colloids Surf A, 2008,316(1/2/3):110-118.  

    13. [13]

      Mizuno N, Misono M. Heterogeneous Catalysis[J]. Chem Rev, 1998,98(1):199-218. doi: 10.1021/cr960401q

    14. [14]

      Otsuki S, Nonaka T, Takashima N. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    15. [15]

      Kuang W X, Rives A, Ben T. Isomerization of n-Hexane over Silica Supported Heteropoly Acids Promoted by the Reduced Ce Ni Oxides[J]. J Colloid Interface Sci, 2002,248(1):123-129. doi: 10.1006/jcis.2001.8169

    16. [16]

      Muñoz M, Romanelli G, Botto I L. Al13[X Mo/WOn](X=Al, Co, V, P) Composites as Catalysts in Clean Oxidation of Aromatic Sulfides[J]. Appl Catal B:Environ, 2010,73(1/2):311-316.

    17. [17]

      Xi Z W, Zhou N, Sun Y. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene[J]. Science, 2001,292(5519):1139-1141. doi: 10.1126/science.292.5519.1139

    18. [18]

      Nisar A, Lu Y, Zhuang J. Polyoxometalate Nanocone Nanoreactors:Magnetic Manipulation and Enhanced Catalytic Performance[J]. Angew Chem Int Ed, 2011,50(4):3187-3192.  

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    5. [5]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    6. [6]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    7. [7]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    12. [12]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    13. [13]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    16. [16]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

Metrics
  • PDF Downloads(3)
  • Abstract views(798)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return