Citation: ZHANG Chenglu, LI Chuanyin, YANG Meng, ZHU Changan, SUN Xiaona, LI Yizheng. Synthesis of 1, 2, 4-Triazolo[3, 4-b]thiadiazole-S-Triazine, Novel Cell Division Cycle 25B and Protein Tyrosine Phosphatase 1B Inhibitors[J]. Chinese Journal of Applied Chemistry, ;2017, 34(4): 385-393. doi: 10.11944/j.issn.1000-0518.2017.04.160246 shu

Synthesis of 1, 2, 4-Triazolo[3, 4-b]thiadiazole-S-Triazine, Novel Cell Division Cycle 25B and Protein Tyrosine Phosphatase 1B Inhibitors

  • Corresponding author: ZHANG Chenglu, zhangchenglu@lnnu.edu.cn
  • Received Date: 13 June 2016
    Revised Date: 27 July 2016
    Accepted Date: 15 August 2016

    Fund Project: Supported by Technology Research Program of Liaoning Provincial Department of Education No.2009A426

Figures(2)

  • Eighteen novel molecules (4a~4i and 5a~5i) containing 1, 2, 4-triazole[3, 4-b]-1, 3, 4-thiadiazol and 1, 3, 5-triazine connected by benzoamino bridge were synthesized. The structures of target molecules were characterized by infrared spectroscopy (IR), nucleic magnetic resonance spectrometry (NMR) and high resolution mass spectrometry (HRMS). Compounds 1A(2, 6-dimorpholino-4-chloro-1, 3, 5-triazin) and 1B(2, 6-dipyrrolidin-4-chloro-1, 3, 5-triazin) were synthesized by the reaction of cyanuric chloride with morpholine or tetrahydropyrrole respectively. The important intermediates 2A and 2B were then afforded by the reaction 1A and 1B with p-aminobenzoic acid respectively. Compounds 3a~3h were obtained by the condensation reaction of eight kinds of aliphatic acids with thiocarbohydrazide using melting method. The target molecules were finally afforded by the reaction of 2A and 2B with 3a~3h respectively under the catalysis of phosphorus oxychloride and tetrabutyl ammonium bromide. In order to compare the effect of 3-aliphatic and 3-benzyl on the bioactivity, 4i and 5i were synthesized according to the same method. The inhibitory activities against cell division cycle 25B (Cdc25B) and protein tyrosine phosphatase 1B (PTP1B) of the target molecules were evaluated. The results show that all of the target molecules have good inhibition against Cdc25B, the values of half inhibition concentration (IC50) are 2.40~0.31 mg/L, the values of IC50 of the target molecules 4a~4f and 5a~5i are lower than contrast reference trisodium vanadate ((1.25±0.14) mg/L), they are expected to be the potential inhibitors against Cdc25B; In the test of PTP1B, fourteen target molecules have good inhibitory activity, the values of IC50 are 0.98~0.37 mg/L, which are lower than that of contrast reference oleanolic acid ((1.19±0.27) mg/L), and they are expected to be the potential inhibitors against PTP1B.
  • 加载中
    1. [1]

      Yu J X, Liu F M, Wang J. Synthesis of 3, 6-Disubstituted 5, 6-Dihydro-s-Triazolo[3, 4-b]-1, 3, 4-Thiadi-azolidines Through the Intramolecular Mannich Reaction[J]. Chinese J Synth Chem, 1998,2(6):171-178.

    2. [2]

      Bano Q, Tiwari N, Girl S. Synthesis and Fungicidal Activities of some 3-Aryloxymethyl-6-Substituted-1, 2, 4-Triazolo3, 4-B 1, 3, 4-Thiadiazoles[J]. Ind J Chem, Sect B, 1993,32(3):399-403.  

    3. [3]

      Francesco P I, Giancarlo F, Ilaria L. 1, 2, 3-Triazoles Improved Synthesis of 5-Substituted 4-Amino-3-Mercato-(4H)-1, 2, 4-Triazoles and a Facile Route to 3, 6-Disubstituted 1, 2, 4-Triazolo[3, 4-b] [1, 3, 4]Thiadiazol-e[J]. J Heterocycl Chem, 1997,34(4):1255-1258. doi: 10.1002/jhet.v34:4

    4. [4]

      Sengupta A K, Gupta A A. Synthesis of some Indole-Derivatives as Potential Anti-Bacterial Agents[J]. Ind J Chem, Sect B, 1983,22(3):263-266.

    5. [5]

      Tandon A, Barthwal J P. Synthesis and Anti-Inflammatory Activity of Some New 3-(Ortho-Substituted Phenyl)-4-Substituted-Phenyl-5-Alkyl" Alkenyl-Mercapto-1H-1, 2, 4-Triazoles[J]. Ind J Chem, Sect B, 1981,20(11):1017-1018.

    6. [6]

      Sharma R S, Bahel S C. Synthesis of Aryloxy Aryl Acetyl Thiosemicarbazides, Substituted 1, 3, 4-Oxadiazoles, 1, 3, 4-Thiadiazoles, 1, 2, 4-Triazoles and Related-Compounds as Potential Fungicides[J]. Ind Chem Soc, 1982,59(7):877-880.

    7. [7]

      Velsicol Chemical Corp. Thiadiazolylimidazolinones.Austrian Patent:345, 816[P], 1978.

    8. [8]

      Padmavathi V, Reddy G S, Padmaja A. Synthesis, Antimicrobial and Cytotoxic Activities of 1, 3, 4-Oxadiazoles, 1, 3, 4-Thiadiazoles and 1, 2, 4-Triazoles[J]. Eur J Med Chem, 2009,44(5):2106-2112. doi: 10.1016/j.ejmech.2008.10.012

    9. [9]

      Sollis S, Paul W S, Howes P D. Novel Inhibitors of Influenza Sialidase Related to GG167 Synthesis of 4-Amino and Guanidino-4H-Pyran-2-Carboxylic Acid-6-Propylamides; Selective Inhibitors of Influenza a Virus Sialidase[J]. Bioorg Med Chem Lett, 1996,15(6):1805-1808.  

    10. [10]

      Mahendra R S, Mallikarjuna B P, Bhetalabhotala S. A Novel Approach to Cyclin-Dependent Kinase 5/p25 Inhibitors:A Potential Treatment for Alzheimer's Disease[J]. Bioorg Med Chem, 2007,15(19):6397-6406. doi: 10.1016/j.bmc.2007.06.053

    11. [11]

      Webster K R, Kimball S D, Misra R. N-(Cycloalkylamino) Acyl-2-Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2.N-[5-[[[5-(1, 1-Dimethylethyl)-2-Oxazolyl]Methyl]Thio]-2-Thiazolyl]-4-Piperidinecarboxamide (BMS-387032), a Highly Efficacious and Selective Antitumor Agent[J]. J Med Chem, 2004,47(7):1719-1728. doi: 10.1021/jm0305568

    12. [12]

      Misra R N, Xiao H Y, Williams D K. Synthesis And Biological Activity of N-Aryl-2-Aminothiazoles:Potent Pan Inhibitors of Cyclin-Dependent Kinases[J]. Bioorg Med Chem Lett, 2004,14(11):2973-2977. doi: 10.1016/j.bmcl.2004.02.105

    13. [13]

      Sahar M I B, Rasha M B. Synthesis of Some New[1, 2, 4]Triazolo[3, 4-b] [1, 3, 4]Thiadiazines and[1, 2, 4]Triazolo[3, 4-b] [1, 3, 4]Thiadiazoles Starting from 5-Nitro-2-Furoic Acid and Evaluation of Their Antimicrobial Activity[J]. Bioorg Med Chem, 2011,19(15):4506-4512. doi: 10.1016/j.bmc.2011.06.024

    14. [14]

      Kumar G V S, Rajendraprasad Y, Mallikarjuna B P. Synthesis and Antimicrobial Activity Evaluation of New 1, 2, 4-Triazoles and 1, 3, 4-Thiadiazoles Bearing Imidazo[2, 1-b]Thiazole Moiety[J]. Eur J Med Chem, 2010,45(1):63-68. doi: 10.1016/j.ejmech.2009.09.024

    15. [15]

      Sui Z H, Guan J H, Hiasta D J. SAR Studies of Diaryltriazoles Against Bacterial Two-Component Regulatory Systems and Their Antibacterial Activities[J]. Bioorg Med Chem Lett, 1998,8(14):1929-1934. doi: 10.1016/S0960-894X(98)00325-4

    16. [16]

      Hollink E, Simanek E E, Bergbreiter D E. Strategies for Protecting and Manipulating Triazine Derivatives[J]. Tetrahedron Lett, 2005,46(12):2005-2008. doi: 10.1016/j.tetlet.2005.01.150

    17. [17]

      Herrera A, Martinez-Alvarez R P, Chioua M. A Practical and Easy Synthesis of 2, 4, 6-Trisubstituted-s-Triazines[J]. Synthesis, 2004,4:503-505.

    18. [18]

      Barton B, Gouwns S, Schaefer M C. On the Kinetics and Energetics of One-Electron Oxidation of 1, 3, 5-Triazines[J]. Chem Commun, 2003(1):112-113. doi: 10.1039/B210119J

    19. [19]

      Garaj V, Puccetti L, Fasolis G. Carbonic Anhydrase Inhibitors:Novel Sulfonamides Incorporating 1, 3, 5-Triazine Moieties as Inhibitors of the Cytosolic and Tumour-Associated Carbonic AnhydraseIsozymes Ⅰ, Ⅱ and Ⅸ[J]. Med Chem Lett, 2005,15(12):3102-3108. doi: 10.1016/j.bmcl.2005.04.056

    20. [20]

      Saczewski F, Brzozowski Z. Synthesis and Antitumor Activity of Novel 2-Amino-4-(3, 5, 5-Trimethyl-2-Pyrazolino)-1, 3, 5-Triazine Derivative[J]. Eur J Med Chem, 2002,37(9):709-720. doi: 10.1016/S0223-5234(02)01379-X

    21. [21]

      Saczewski F, Brzozowski Z, Gdaniec M. Synthesis, Structural Characterization and Antitumor Activity of Novel 2, 4-Diamino-1, 3, 5-Triazine Derivatives[J]. Eur J Med Chem, 2000,35(12):1053-1064. doi: 10.1016/S0223-5234(00)01194-6

    22. [22]

      Kuo G H, DeAngelis A, Emanuel S. Synthesis and Identification of[1, 3, 5]Triazine-Pyridine Biheteroaryl as a Novel Series of Potent Cyclin-Dependent Kinase Inhibitors[J]. J Med Chem, 2005,48(14):4535-4546. doi: 10.1021/jm040214h

    23. [23]

      Robert J, Jarry C. Multidrug Resistance Reversal Agents[J]. J Med Chem, 2003,46(23):4805-4817. doi: 10.1021/jm030183a

    24. [24]

      ZHANG Chenglu, GUO Yang, WU Feiyu. Synthesis and Biological Activities of 3-Aliphatic-1, 2, 4-Triazole[3, 4-b]-1, 3, 4-Thiatriazole Derivatives Containing Pyridine Unit[J]. Chinese J Appl Chem, 2014,31(12):1419-1427.  

    25. [25]

      ZHANG Chenglu, WANG Xue, Hu Xue. Synthesis and Biological Activities of V-Shaped Symmetrical Triazolothiazine Oxadiazole Derivatives[J]. Chem J Chinese Univ, 2015,36(3):463-468.  

    26. [26]

      ZHANG Chenglu, TANG Jie, YIN Liying. One Pot Synthesis of 3-Substituted-1-morpholino-1, 2, 4-triazole Mannich Base and Their Activity Evaluation[J]. Chinese J Org Chem, 2016,36(2):358-363.  

    27. [27]

      Lavecchia A, Giovanni C D, Pesapane A. Discovery of New Inhibitors of Cdc25B Dual Specificity Phosphatases by Structure-Based Virtual Screening[J]. J Med Chem, 2012,55(9):4142-4158. doi: 10.1021/jm201624h

    28. [28]

      Matsuno T, Kato M, Tsuchid Y. Synthesis and Aromatase-Inhibitory Activity of Imidazolyl-1, 3, 5-Triazine Derivatives[J]. Chem Pharm Bull, 1997,45(2):291-296. doi: 10.1248/cpb.45.291

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    4. [4]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    10. [10]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    11. [11]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    17. [17]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    18. [18]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    19. [19]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(3)
  • Abstract views(695)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return