Citation: WANG Song, LI Yang, LI Fei, CHENG Xiaohong. Microwave Hydrothermal Synthesis and Photocatalytic Properties of ZnO Nano-/Microparticles[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 220-224. doi: 10.11944/j.issn.1000-0518.2017.02.160161 shu

Microwave Hydrothermal Synthesis and Photocatalytic Properties of ZnO Nano-/Microparticles

  • Corresponding author: WANG Song, wangsong1984@126.com
  • Received Date: 15 April 2016
    Revised Date: 12 June 2016
    Accepted Date: 5 July 2016

    Fund Project: Hubei Provincial Natural Science Foundation of China 2014CFB635the National Natural Science Foundation of China 21401053

Figures(4)

  • ZnO with various morphologies has been obtained by microwave hydrothermal method with the assistance of ethylene glycol (EG). By adjusting the concentration of EG in the system, the morphology of sample can be tuned from irregular disks to twin crystal rods, to shuttle shape, and finally to sphere shape. It is founded that the concentration of EG plays an important role in adjusting system pressure, which significantly influence the reaction speed and final shape of products. The photocatalytic activity of as-prepared ZnO with different morphologies in aqueous solution was investigated by bleaching dye rhodamine B under Xe lamp. The sphere shape sample possesses the most efficient photocatalytic properties, which can completely photodegradate rhodamine B in 50 min.
  • 加载中
    1. [1]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    2. [2]

      Greene L E, Law M, Goldberger J. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays[J]. Angew Chem Int Ed, 2003,42(26):3139-3142.  

    3. [3]

      Özgür V, Alivov Y I, Liu C. A Comprehensive Review of ZnO Materials and Devices[J]. J Appl Phys, 2005,98(4):041301-041301. doi: 10.1063/1.1992666

    4. [4]

      Zhang Q, Deneau C S, Zhou X. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv Mater, 2009,21(41):4087-4108. doi: 10.1002/adma.v21:41

    5. [5]

      Yu W L, Zhang J F, Peng T Y. New Insight into the Enhanced Photocatalytic Activity of N-, C-and S-doped ZnO Photocatalysts[J]. Appl Catal B Environ, 2016,181(12):220-227.  

    6. [6]

      Wang H, Li G, Jia L. Controllable Preferential-Etching Synthesis and Photocatalytic Activity of Porous ZnO Nanotubes[J]. J Phys Chem C, 2008,112(31):11738-11743. doi: 10.1021/jp803059k

    7. [7]

      Kansal S K, Singh M, Sud D. Studies on Photodegradation of Two Commercial Dyes in Aqueous Phase Using Different Photocatalysts[J]. J Hazard Mater, 2007,141(3):581-590. doi: 10.1016/j.jhazmat.2006.07.035

    8. [8]

      Sobana N, Swaminathan M. The Effect of Operational Parameters on the Photocatalytic Degradation of Acid Red 18 by ZnO[J]. Sep Purif Technol, 2007,56(1):101-107. doi: 10.1016/j.seppur.2007.01.032

    9. [9]

      Houšková V, Štengl V, Bakardjieva S. Nanostructure Materials for Destruction of Warfare Agents and Eco-toxins Prepared by Homogeneous Hydrolysis with Thioacetamide:Part 1.Zinc Oxide[J]. J Phys Chem Solids, 2007,68(5/6):716-720.  

    10. [10]

      Kaneco S, Katsumata H, Suzuki T. Solar Photo-catalytic Degradation of Endocrine Disruptor Di-n-butyl Phthalate in Aqueous Solution Using Zinc Oxide[J]. Bull Catal Soc India, 2007,6(3):22-33.  

    11. [11]

      Zhang Q, Bai W. Synthesis and Growth Mechanism of Macroscopic ZnO Nanocombs and Nanobelts[J]. Vacuum, 2011,86(4):398-402. doi: 10.1016/j.vacuum.2011.08.005

    12. [12]

      Duan H F, He H P, Sun L W. Indium-doped ZnO Nanowires with Infrequent Growth Orientation, Rough Surfaces and Low-density Surface Traps[J]. Nanoscale Res Lett, 2013,8(1):493-493. doi: 10.1186/1556-276X-8-493

    13. [13]

      Liu Z, Lei E, Jing Y. Growth of ZnO Nanorods by Aqueous Solution Method with Electrodeposited ZnO Seed Layers[J]. Appl Surf Sci, 2009,255(12):6415-6420. doi: 10.1016/j.apsusc.2009.02.030

    14. [14]

      Yue S, Yan Z, Shi Y. Synthesis of Zinc Oxide Nanotubes within Ultrathin Anodic Aluminum Oxide Membrane by Sol-gel Method[J]. Mater Lett, 2013,98(5):246-249.  

    15. [15]

      Lou Z, Deng J, Wang L. Toluene and Ethanol Sensing Performances of Pristine and Pdo-decorated Flower-like ZnO Structures[J]. Sens Actuators B, 2013,176(1):323-329.  

    16. [16]

      Li Z Q, Ding Y, Xiong Y J. Room-temperature Surface-erosion Route to ZnO Nanorod Arrays and Urchin-like Assemblies[J]. Chemistry, 2004,10(22):5823-5828. doi: 10.1002/(ISSN)1521-3765

    17. [17]

      Yang P, Yan H, Mao S. Controlled Growth of ZnO Nanowires and Their Optical Properties[J]. Adv Funct Mater, 2002,12(5):323-331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    18. [18]

      WANG Yan, TAN Guoqiang, MIAO Hongyan. Preparation of Zinc Oxide Nano Powder by Microwave Hydrothermal Method and Its Photocatalytic Property[J]. Rare Met Mater Eng, 2011(S1):32-35.

    19. [19]

      WANG Ruizhi, WANG Zhenzhen, ZHANG Ming. Room-temperature Synthesis and Photocatalytic Activity of Lamella Flower-like ZnO[J]. Chinese J Appl Chem, 2014,31(3):316-322.  

    20. [20]

      LIU Zili, ZHU Yucong, WANG Kui. Sythesis of Zinc Oxide with Dandelions Shape and Its Photocatalytic Propertie[J]. J He'nan Normal Univ (Nat Sci), 2015(1):63-68.  

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    4. [4]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    5. [5]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    10. [10]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    20. [20]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

Metrics
  • PDF Downloads(5)
  • Abstract views(1243)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return