Citation: JIAO Yuan, LIU Fuyong, WANG Songbai, SHUANG Shaomin, DONG Chuan. Synthesis of Magnetic Nanocomposites and Sensitive Detection for Copper (Ⅱ)[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 111-117. doi: 10.11944/j.issn.1000-0518.2017.01.160385 shu

Synthesis of Magnetic Nanocomposites and Sensitive Detection for Copper (Ⅱ)

  • Corresponding author: DONG Chuan, dc@sxu.edu.cn
  • Received Date: 23 September 2016
    Revised Date: 27 October 2016
    Accepted Date: 27 October 2016

    Fund Project: Higher School and Technology Innovation Project in Shanxi Province 2016105the National Natural Science Foundation of China No. 21575084, No.21475080

Figures(12)

  • The magnetic nanoparticles (NPs) coated with silica NPs (Fe3O4@SiO2) were prepared by chemical co-precipation method. A multifunctional magnetic nanocomposite (Fe3O4@SiO2-Pyh) was fabricated by grafting pyridoxal hydrazide (Pyh) to the surface of Fe3O4@SiO2 NPs via hexamethylene diisocyanate. The structure, morphology, and magnetic property of Fe3O4@SiO2-Pyh were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray powder diffraction. The Fe3O4@SiO2-Pyh has a clear core shell architecture, in which an average particle diameter is 50~55 nm with about 15 nm SiO2 shell. Fe3O4@SiO2-Pyh contains -CO-NH-N=CH-active groups, which can coordinate with Cu2+ to form stable complex. Based on this principle we established an analytical method for the determination of Cu2+, which was characterized by UV-Vis spectroscopy. The linear range of detecting Cu2+ concentration is 3.4×10-7~4.5×10-6 mol/L with detection limit 1.03×10-7 mol/L. Moreover, the nanocomposites display superparamagnetic properties, which can be used for effective separation of excess Cu2+ from the liquid phase by applying an external magnetic field. As-synthesized Fe3O4@SiO2-Pyh can be a good candidate for selective detection and simple removal of Cu2+ in environmental fields.
  • 加载中
    1. [1]

      Singh S, Barick K C, Bahadur D. Surface Engineered Magnetic Nanoparticles for Removal of Toxic Metal Ions and Bacterial Pathogens[J]. J Hazard Mater, 2011,192(3):1539-1547. doi: 10.1016/j.jhazmat.2011.06.074

    2. [2]

      Andersson L I. Molecular Imprinting for Drug Bioanalysis:A review on the Application of Imprinted Polymers to Solid-Phase Extraction and Binding Assay[J]. J Chromatogr B, 2000,739(1):163-173. doi: 10.1016/S0378-4347(99)00432-6

    3. [3]

      Arslan M, Sayin S, Yilmaz M. Enantioselective Sorption of some Chiral Carboxylic Acids by Various Cyclodextrin-Grafted Iron Oxide Magnetic Nanoparticles[J]. Tetrahedron:Asymmetry, 2013,24(17):982-989. doi: 10.1016/j.tetasy.2013.07.015

    4. [4]

      Parham H, Zargar B, Shiralipour R. Fast and Efficient Removal of Mercury from Water Samples Using Magnetic Iron Oxide Nanoparticles Modified with 2-Mercaptobenzothiazole[J]. J Hazard Mater, 2012,205(1):94-100.  

    5. [5]

      Parham H, Zargar B, Rezazadeh M. Removal, Preconcentration and Spectrophotometric Determination of Picric Acid in Water Samples Using Modified Magnetic Iron Oxide Nanoparticles as an Efficient Adsorbent[J]. Mater Sci Eng C, 2012,32(7):2109-2114. doi: 10.1016/j.msec.2012.05.044

    6. [6]

      Fan H, Li B, Feng Y. Multifunctional Fe3O4@SiO2@GdVO4:Eu3+ Core-Shell Nanocomposite for a Potential Drug Carrier[J]. Ceram Int, 2016,42(11):13326-13330. doi: 10.1016/j.ceramint.2016.05.096

    7. [7]

      Almeida S D N, Toma H E. Neodymium(Ⅲ) and Lanthanum(Ⅲ) Separation by Magnetic Nanohydrometallurgy Using DTPA Functionalized Magnetite Nanoparticles[J]. Hydrometallurgy, 2016,161(1):22-28.  

    8. [8]

      Mohapatra S, Sahu S, Nayak S. Design of Fe3O4@SiO2@Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion[J]. Langmuir, 2015,31(29):8111-8120. doi: 10.1021/acs.langmuir.5b01513

    9. [9]

      Yin N, Wu P, Liang G. A Multifunctional Mesoporous Fe3O4/SiO2/CdTe Magnetic-Fluorescent Composite Nanoprobe[J]. Appl Phys A, 2016,122(3)243. doi: 10.1007/s00339-016-9781-8

    10. [10]

      Khosroshahi M E, Ghazanfari L. Synthesis and Functionalization of SiO2 Coated Fe3O4 Nanoparticles with Amine Groups Based on Self-Assembly[J]. Mater Sci Eng C, 2012,32(5):1043-1049. doi: 10.1016/j.msec.2011.09.003

    11. [11]

      Zhao H, Cui H J, Fu M L. A General and Facile Method for Improving Carbon Coat on Magnetic Nanoparticles with a Thickness Control[J]. J Colloid Interface Sci, 2016,461(1):20-24.  

    12. [12]

      Liu X Q, Ma Z Y, Xing J M. Preparation and Characterization of Amino-silane Modified Superparamagnetic Silica Nanospheres[J]. J Magn Magn Mater, 2004,270(1/2):1-6.  

    13. [13]

      Bao S, Tang L, Li K, Ning P. Highly Selective Removal of Zn (Ⅱ) Ion from Hot-Dip Galvanizing Pickling Waste with Amino-Functionalized Fe3O4@SiO2 Magnetic Nano-Adsorbent[J]. J Colloid Interface Sci, 2016,462(1):235-242.  

    14. [14]

      Yin C X, Qu L J, Huo F J. A Pyridoxal-based Chemosensor for Visual Detection of Copper Ion and Its Application in Bioimaging[J]. Chinese Chem Lett, 2014,25(9):1230-1234. doi: 10.1016/j.cclet.2014.06.017

    15. [15]

      Liu K, Shang H, Meng F. A Novel Near-Infrared Fluorescent Platform with Good Photostability and the Application for a Reaction-Based Cu2+ Probe in Living Cells[J]. Talanta, 2016,147:193-198. doi: 10.1016/j.talanta.2015.09.052

    16. [16]

      Li P, Duan X, Chen Z. A Near-Infrared Fluorescent Probe for Detecting Copper (Ⅱ) with High Selectivity and Sensitivity and Its Biological Imaging Applications[J]. Chem Comm, 2011,47(27):7755-7. doi: 10.1039/c1cc11885d

    17. [17]

      Sun Z, Guo D, Li H. Multifunctional Fe3O4@SiO2 Nanoparticles for Selective Detection and Removal of Hg2+ Ion in Aqueous Solution[J]. RSC Adv, 2015,5(15):11000-11008. doi: 10.1039/C4RA13487G

    18. [18]

      Xu Y H, Zhou Y, Ma W H. Functionalized Magnetic Core-Shell Fe3O4@SiO2 Nanoparticles for Sensitive Detection and Removal of Hg2+[J]. J Nanopart Res, 2013,15(6)1716. doi: 10.1007/s11051-013-1716-0

  • 加载中
    1. [1]

      Yanan Fan Jingjing Huang . Interactive Electronic Courseware Facilitates the Development of Integrated Undergraduate-Graduate Instrumental Analysis Laboratory Courses: A Case Study of UV-Vis Spectroscopy Analysis Experiment. University Chemistry, 2025, 40(10): 282-287. doi: 10.12461/PKU.DXHX202411009

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    10. [10]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    15. [15]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

Metrics
  • PDF Downloads(6)
  • Abstract views(940)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return