Citation: ZHANG Lili, DING Huimin, ZHANG Jitang, XU Donghua, LI Zhifeng. Thermal Conductivity and Flame Retardancy of Carbon Nanotube Modified Epoxy Resin[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 46-53. doi: 10.11944/j.issn.1000-0518.2017.01.160178 shu

Thermal Conductivity and Flame Retardancy of Carbon Nanotube Modified Epoxy Resin

  • Corresponding author: ZHANG Lili, lili.zhang@jci.com
  • Received Date: 27 April 2016
    Revised Date: 20 June 2016
    Accepted Date: 13 July 2016

    Fund Project: Supported by the National Natural Science Foundation of China No. 21274152

Figures(6)

  • Epoxy resin(EP) nanocomposites have been regarded as high performance materials with the advantages of organic polymers, inorganic materials and nanoparticles. Herein, DGEBA/MWCNTs nanocomposites were prepared based on diglycidyl ether of bisphenol-A(DGEBA), methylhexahydrophthalic anhydride(MHHPA) as curing agent, and multi-walled carbon nanotubes(MWCNTs) as additive.The effect of MWCNTs(mass fraction less than 1.5%) on thermal and flame retardancy of DGEBA epoxy resin was explored by DGEBA/MWCNTs nanocomposites structure, thermal properties, thermal conductivity and cone calorimeter analysis. MWCNTs formed cluster when their mass fraction is 1.5%. With increasing the content of MWCNTs, the glass transition temperature(Tg) and the temperature at which 5% mass loss of the composites increase initially and then decrease, at the same time the residual carbon content increases. Thermal conductivity of the composite exhibits a trend of rising initially and then decreasing afterwards. The maximal thermal conductivity appears when the mass fraction of MWCNTs reaches 1%. The total heat release volume of these composites decreases and the total volume of smoke release increases compared to those of epoxy resin. Cone calorimeter tests show that the incorporation of MWCNTs into epoxy thermosets can improve its flame retardancy to some extent.
  • 加载中
    1. [1]

      Ray S S, Okamoto M. Polymer/layered Silicate Nanocomposites:A Review from Preparation to Processing[J]. Prog Polym Sci, 2003,28(11):1539-1541. doi: 10.1016/j.progpolymsci.2003.08.002

    2. [2]

      Emmanuel P G. Polymer Layered Silicate Nanocomposites[J]. Adv Mater, 1996,8(1):1-9.  

    3. [3]

      BI Hong, WU Xianliang, LI Minquan. Electroless Plating Preparation and Microwave Absorbing Properties of Co-coated Carbon Nanotubes/Epoxy Composite[J]. Aerosp Mater Technol, 2005,35(2):34-37.  

    4. [4]

      YUAN Guanming, LI Xuanke, ZHANG Mingjin. Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy Resin[J]. Aerosp Mater Technol, 2005,35(2):38-41.  

    5. [5]

      HONG Xiaobin, XIE Kai, XIAO Jiayu. Curing Reaction of Organic Silane Modified Bisphenol F Epoxy Resin[J]. Chinese J Appl Chem, 2007,24(11):1264-1267.  

    6. [6]

      Park S J, Jeong H J, Nah C. A Study of Oxyfluorination of Multi-walled Carbon Nanotubes on MechanicalInterfacial Properties of Epoxy Matrix Nanocomposites[J]. Mater Sci Eng A, 2004,38(1):13-16.  

    7. [7]

      Tian L, Pinnavaia T J. Clay-reinforced Epoxy Nanocomposites[J]. Chem Mater, 2002,52(9):2216-2219.  

    8. [8]

      Lebaron P C, Wang Z, Pinnavaia T J. Polymer-layered Silicate Nanocomposites:An Overview[J]. Appl Clay Sci, 1999,15(1):11-29.  

    9. [9]

      WANG Jianguo. Study on the Structure and Properties of Multi-walled Carbon Nanotubes/Epoxy Resin Composites[D]. Hangzhou:Zhejiang University,2006 (in Chinese).

    10. [10]

      Im J S, Lee S K, In S J. Improved Flame Retardant Properties of Epoxy Resin by Fluorinated MMT/MWCNT Additives[J]. J Anal Appl Pyrolysis, 2010,89(2):225-232. doi: 10.1016/j.jaap.2010.08.003

    11. [11]

      Dutta A, Penumadu D, Files B. Nanoindentation Testing for Evaluating Modulus and Hardness of Single-walled Carbon Nanotube-reinforced Epoxy Composites[J]. J Mater Res, 2004,9(1):158-164.

    12. [12]

      ZANG Pengyuan, XUE Hua, CAI Jing. Synthesis and Characterization of Multi-branch and Iron-Filled Carbon Nanotubes[J]. Chinese J Inorg Chem, 2011,27(8):1625-1629.

    13. [13]

      GUO Zhansheng, DU Shanyi, ZHANG Boming. Cure Kinetics and Chemorheological Behavior of Epoxy Resin Used in Advanced Composites[J]. Acta Mater Compos Sin, 2004,21(4):146-151.

    14. [14]

      ZENG Xiaoliang, LIU Jia, XIONG Yuanqin. Progress in Research on High Heat Resistance of Epoxy Resins[J]. Chem Ind Prog, 2009,28(6):986-990.

    15. [15]

      HONG Bin, WANG Tianzhen. Market Analysis of Epoxy Applications[J]. Thermoset Resin, 2011,26(3):54-58.

    16. [16]

      Wu K, Song L, Hu Y. Synthesis and Characterization of a Functional Polyhedral Oligomericsilses Quioxaneand Its Flame Retardancy in Epoxy Resin[J]. Prog Org Coat, 2009,65(4):490-497. doi: 10.1016/j.porgcoat.2009.04.008

    17. [17]

      Mercado L A, Galià M, Reina J A. Silicon-containing Flame Retardant Epoxy Resins:Synthesis, Characterization and Properties[J]. Polym Degrad Stab, 2006,91(11):2588-2594. doi: 10.1016/j.polymdegradstab.2006.05.007

    18. [18]

      Kaynak C, Nakas G I, Isitman N A. Mechanical Properties, Flammability and Char Morphology of Epoxy Resin/Montmorillonite Nanocomposites[J]. Appl Clay Sci, 2009,46(3):319-324. doi: 10.1016/j.clay.2009.08.033

    19. [19]

      Kaya E, Tanoğlu M, Okur S. Layered Clay/Epoxy Nanocomposites:Thermomechanical, Flame Retardancyand Optical Properties[J]. J Appl Poly Sci, 2008,109(2):834-840. doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Duan J K, Kim C, Jiang P K. Nano-AlN Functionalization by Silane Modification for the Preparation of Covalent-Integrated Epoxy/Poly(ether imide) Nanocomposites[J]. J Appl Polym Sci, 2010,115(5):2734-2746. doi: 10.1002/app.v115:5

    21. [21]

      ZENG Lingke, QI Xiaoling, WANG Hui. Study on the Thermal Conductivity of Oxide Thermoelectric Materials[J]. Bull Chinese Ceram Soc, 2009,28(3):525-530.

    22. [22]

      XIAO Lin, LI Xiaozhao, ZHAO Xiaobao. Laroratory of Influences of Moisture Content and Porosity on Thermal Conductivity of Soils[J]. J PLA Univ Sci Tech(Nat Sci Edn), 2008,9(3):241-247.

    23. [23]

      Wei L, Kuo P K, Thomas R L. Thermal Conductivity of Isotopically Modified Single Crystal Diamond[J]. Phys Rev Lett, 1993,70(24):3764-3767. doi: 10.1103/PhysRevLett.70.3764

    24. [24]

      Anthony T R, Banholzer W F, Fleiseher J F. Thermal Diffusivity of Isotopically Enriched 12 C Diamond[J]. Phys Rev B, 1990,42(2):1104-1111. doi: 10.1103/PhysRevB.42.1104

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(6)
  • Abstract views(1021)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return