Citation: HU Zhengyong, LI Shanjia, DONG Xinrong. Synthesis and Photoelectric Properties of a Cyclometalated Iridium-Platinum Binuclear Complex[J]. Chinese Journal of Applied Chemistry, ;2016, 33(12): 1428-1434. doi: 10.11944/j.issn.1000-0518.2016.12.160119 shu

Synthesis and Photoelectric Properties of a Cyclometalated Iridium-Platinum Binuclear Complex

  • Corresponding author: HU Zhengyong, 
  • Received Date: 21 March 2016
    Available Online: 24 May 2016

    Fund Project:

  • A dinuclear cyclometalated iridium-platinum complexIridium[Ⅲ]bis[(2,4-difluorophenyl)-pyridinato-N,C2'] [picolinate]-C6-Paltinum[II] [phenylpyridinato-N,C2'] [picolinate](FIrPPyPt) was designed and synthesized. Its structure and properties were characterized by NMR, elemental analyzer, UV absorption spectroscopy and photoluminescence spectroscopy. The results show that the UV absorption of the complex FIrPPyPt is located between 250 and 450 nm, and the fluorescence emission peak is located at 465 and 493 nm. The electroluminescent devices were made from poly(N-vinylcarbazole)(PVK)+2-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole(PBD) doped with 1%~8% mass fraction of FIrPPyPt complexes. The electroluminescence spectra at different voltages show the characteristic peaks of iridium complexes and platinum complexes located at 400, 500 and 530 nm in blue-green emission zones. The dual core complexes are used for single doped organic white light emitting devices with simple fabrication, good color stability and good reproducibility, it provides a good idea for the single doped white light emitting devices.
  • 加载中
    1. [1]

      [1] Baldo M A,O'Brien D F,Forrest S R,et al. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature,1998,395(10):151-154.

    2. [2]

      [2] Sergey L,Peter D,Drew M,et al. Highly Phosphorescent Bis-cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J Am Chem Soc,2001,123(18):4304-4312.

    3. [3]

      [3] Etienne B,Stephane S,Philippe B,et al. Sublimation Not an Innocent Technique:A Case of Bis-cyclometalated Iridium Emitter for OLED[J]. Inorg Chem,2008,47(15):6575-6577.

    4. [4]

      [4] Sasabe H,Takamatsu J,Motoyama T,et al. High-efficiency Blue and White Organic Light-emitting Devices Incorporating a Blue Iridium Carbine Complex[J]. Adv Mater,2010,22(1):5003-5007.

    5. [5]

      [5] You Y,Park S Y. Phosphorescent Iridium(Ⅲ) Complexes:Toward High Phosphorescence Quantum Efficiency Through Ligand Control[J]. Dalton Trans,2009,1(1):1267-1272.

    6. [6]

      [6] LYU Jianhong,MA Zhihua,DING Junqiao,et al. Synthesis and Characterization of a Green-emitting Iridium Comples Based on Fluorinated Benzoimidazole Ligand[J]. Chinese J Appl Chem,2014,31(10):1177-1184(in Chinese).吕剑虹,马志华,丁军桥,等. 基于氟代苯并咪唑配体的绿光铱配合物的合成与表征[J]. 应用化学,2014,31(10):1177-1184.

    7. [7]

      [7] Lin M S,Yang S J,Chang H W,et al. Incorporation of a CN Group into mCP:A New Bipolar Host Material for Highly Efficient Blue and White Electrophosphorescent Devices[J]. J Mater Chem,2012,22(31):16114-16120.

    8. [8]

      [8] Lee C W,Lee J Y. Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-emitting Diodes Using Pyrido[2,3-b]indole Derivatives as Host Materials[J]. Adv Mater,2013,25(38):5450-5454.

    9. [9]

      [9] You Y,Park S Y. Inter-ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex:Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure[J]. J Am Chem Soc,2005,127(36):12438-12439.

    10. [10]

      [10] Hirose A,Tanaka K,Tamashima K,et al. Synthesis of Dual-emissive Organometallic Complexes Containing Heterogeneous Metal Elements[J]. Tetrahedron Lett,2014,55(47):6477-6481.

    11. [11]

      [11] He K Q,Wang X D,Yu J T,et al. Synthesis and Optoelectronic Properties of Novel Fluorene-bridged Dinuclear Cyclometalated Iridium(Ⅲ) Complexwith A-D-A Framework in the Single-emissive-layer WOLEDs[J]. Org Electron,2014,15(11):2942-2949.

    12. [12]

      [12] Mayr C,Br tting W,Taneda M,et al. Different Orientation of the Transition Dipole Moments of Two Similar Pt(Ⅱ) Complexes and Their Potential for High Efficiency Organic Light-emitting Diodes[J]. Org Electron,2014,15(11):3031-3037.

    13. [13]

      [13] Chang S Y,Cheng Y M,Chi Y,et al. Emissive Pt(Ⅱ) Complexes Bearing Both Cyclometalated Ligand and 2-Pyridyl Hexafluoropropoxide Ancillary Chelate[J]. Dalton Trans,2008,48:6901-6911.

    14. [14]

      [14] Hu Z Y,Luo C P,Wang L,et al. Highly Efficient Saturated Red Electro-phosphorescence from Isoquinoline-based Iridium Complex Containing Triphenylamino Units in Polymer Light-emitting Devices[J]. Chem Phys Lett,2007,441(4):277-281.

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    6. [6]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    7. [7]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Huihua GONGTianhua CUILi JIJichuan ZHANGLiyuan ZHANGYan CHENZhenye WANGJiaqi XURuixiang LI . Hydrogenation of CO2 to formate catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated iridium(Ⅰ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2609-2620. doi: 10.11862/CJIC.20250170

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(450)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return