基于离子通道的电化学传感技术研究进展

姜晓晶 梁荣宁 秦伟

引用本文: 姜晓晶,  梁荣宁,  秦伟. 基于离子通道的电化学传感技术研究进展[J]. 分析化学, 2018, 46(9): 1350-1356. doi: 10.11895/j.issn.0253-3820.181317 shu
Citation:  JIANG Xiao-Jing,  LIANG Rong-Ning,  QIN Wei. Research Advances in Ion Channel-based Electrochemical Sensing Techniques[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1350-1356. doi: 10.11895/j.issn.0253-3820.181317 shu

基于离子通道的电化学传感技术研究进展

  • 基金项目:

    本文系国家自然科学基金项目(Nos.41576106,21475148)、中国科学院青年创新促进会人才项目(No.2014190)以及山东省泰山学者人才计划(No.TS20081159)资助

摘要: 近年来,基于离子通道的电化学检测技术备受关注,目前该技术已广泛应用于DNA测序、分子间相互作用测定以及无机离子、生物分子等检测中。本文从电化学检测方法的角度,综述了近年来基于离子通道的电流型、阻抗型以及电位型检测技术在化学与生物传感中的应用研究进展,重点介绍了此技术的作用原理及传感器构建方法,并对离子通道基电化学传感技术进行了展望。

English

    1. [1]

      Apel P.Radiat.Meas.,2001,34(1-6):559-566

    2. [2]

      Keyser U F, Krapf D, Koeleman B N, Smeets R M M, Dekker N H, Dekker C. Nano Lett., 2005,5(11):2253-2256

    3. [3]

      Krapf D, Wu M Y, Smeets R M M, Zandbergen H W, Dekker C, Lemay S G. Nano Lett., 2006,6(1):105-109

    4. [4]

      Salancon E, Tinland B. J. Colloid Interf. Sci., 2013,392:465-469

    5. [5]

      Lu Y L, Zhang D M, Zhang Q, Huang Y X, Luo S B, Yao Y, Li S, Liu Q J. Biosens. Bioelectron., 2016,79:251-257

    6. [6]

      Avdoshenko S M, Nozaki D, da Rocha C G, Gonzalez J W, Lee M H, Gutierrez R, Cuniberti G. Nano Lett., 2013,13(5):1969-1976

    7. [7]

      Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndic M. Nano Lett., 2010,10(8):2915-2921

    8. [8]

      Feng J, Liu K, Graf M, Lihter M, Bulushev R D, Dumcenco D, Alexander D T L, Krasnozhon D, Vuletic T, Kis A, Radenovic A. Nano Lett., 2015,15(5):3431-3438

    9. [9]

      Li J, Stein D, McMullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001,412(6843):166-169

    10. [10]

      Storm A J, Chen J H, Ling X S, Zandbergen H W, Dekker C. Nat. Mater., 2003,2(8):537-540

    11. [11]

      ZHAN Sheng-Xin, ZHANG Xiao-Hui, WANG Na, YANG Xiao-Rui, GUO Ming. Mater. Rev., 2012,(19):13-16 战胜鑫, 张晓辉, 王娜, 杨晓蕊, 郭明.材料导报,2012,(19):13-16

    12. [12]

      YAN Bing-Yong, GU Zhen, GAO Rui, CAO Chan, YING Yi-Lun, MA Wei, LONG Yi-Tao. Chinese J. Anal. Chem., 2015,43(7):971-975 颜秉勇, 顾震, 高瑞, 曹婵, 应佚轮, 马巍, 龙亿涛.分析化学,2015,43(7):971-975

    13. [13]

      Gilboa T, Meller A. Analyst, 2015,140(14):4733-4747

    14. [14]

      Makra I, Gyurcsanyi R E. Electrochem. Commun., 2014,43:55-59

    15. [15]

      Braha O, Gu L Q, Zhou L, Lu X, Cheley S, Bayley H. Nat. Biotechnol., 2000,18(9):1005-1007

    16. [16]

      Zahid O K, Wang F, Ruzicka J A, Taylor E W, Hall A R. Nano Lett., 2016,16(3):2033-2039

    17. [17]

      Ayub M, Stoddart D, Bayley H. ACS Nano, 2015,9(8):7895-7903

    18. [18]

      Harrington L, Alexander L T, Knapp S, Bayley H. Angew. Chem. Int. Edit., 2015,54(28):8154-8159

    19. [19]

      Nivala J, Mulroney L, Li G, Schreiber J, Akeson M. ACS Nano, 2014,8(12):12365-12375

    20. [20]

      Gomez V, Ramirez P, Cervera J, Nasir S, Ali M, Ensinger W, Mafe S. Appl. Phys. Lett., 2015,106(7):073701

    21. [21]

      Kowalczyk S W, Tuijtel M W, Donkers S P, Dekker C. Nano Lett., 2010,10(7):1414-1420

    22. [22]

      Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011,6(10):615-624

    23. [23]

      Sugawara M, Kojima K, Sazawa H, Umezawa Y. Anal. Chem., 1987,59(24):2842-2846

    24. [24]

      Minami H, Sugawara M, Odashima K, Umezawa Y, Uto M, Michaelis E K, Kuwana T. Anal. Chem., 1991,63(23):2787-2795

    25. [25]

      Plesa C, van Loo N, Ketterer P, Dietz H, Dekker C. Nano Lett., 2015, 15(1):732-737

    26. [26]

      Skinner G M, van den Hout M, Broekmans O, Dekker C, Dekker N H. Nano Lett., 2009,9(8):2953-2960

    27. [27]

      Talaga D S, Li J L. J. Am. Chem. Soc., 2009,131(26):9287-9297

    28. [28]

      Rodriguez-Larrea D, Bayley H. Nat. Nanotechnol., 2013,8(4):288-295

    29. [29]

      Niedzwiecki D J, Iyer R, Borer P N, Movileanu L. ACS Nano, 2013,7(4):3341-3350

    30. [30]

      Rosen C B, Rodriguez-Larrea D, Bayley H. Nat. Biotechnol., 2014,32(2):179-181

    31. [31]

      Cabello-Aguilar S, Abou Chaaya A, Bechelany M, Pochat-Bohatier C, Balanzat E, Janot J M, Miele P, Balme S. Soft Matter, 2014,10(42):8413-8419

    32. [32]

      Kaya D, Dinler A, San N, Kececi K. Electrochim. Acta, 2016,202:157-165

    33. [33]

      Wei C, Bard A J, Feldberg S W. Anal. Chem., 1997,69(22):4627-4633

    34. [34]

      Zhang Y C, Chen Y L, Fu Y Q, Ying C F, Feng Y X, Huang Q M, Wang C, Pei D S, Wang D Q. Sci. Rep., 2016,6:27959

    35. [35]

      Shim J, Humphreys G I,Venkatesan B M, Munz J M, Zou X Q, Sathe C, Schulten K, Kosari F, Nardulli A M, Vasmatzis G, Bashir R. Sci. Rep., 2013,3:1389

    36. [36]

      Savariar E N, Krishnamoorthy K, Thayumanavan S. Nat. Nanotechnol., 2008,3(2):112-117

    37. [37]

      Lee S B, Mitchell D T,Trofin L. Science, 2002,296(5576):2198-2200

    38. [38]

      Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. USA, 1996,93(24):13770-13773

    39. [39]

      CAO Chan, LIAO Dong-Fang, YING Yi-Lun, LONG Yi-Tao. Acta Chim. Sinica,2016,(9):734-737 曹婵, 廖冬芳, 应佚伦, 龙亿涛.化学学报,2016,(9):734-737

    40. [40]

      Fahie M A, Chisholm C, Chen M. ACS Nano, 2015,9(2):1089-1098

    41. [41]

      Fahie M A, Yang B, Mullis M, Holden M A, Chen M. Anal. Chem., 2015,87(21):11143-11149

    42. [42]

      Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. J. Am. Chem. Soc., 2009,131(22):7800-7805

    43. [43]

      Tian Y, Hou X, Wen L P, Guo W, Song Y L, Sun H Z, Wang Y G, Jiang L, Zhu D B. Chem. Commun., 2010,46(10):1682-1684

    44. [44]

      Tian Y, Zhang Z, Wen L P, Ma J, Zhang Y Q, Liu W D, Zhai J, Jiang L. Chem. Commun., 2013,49(91):10679-10681

    45. [45]

      Gao R, Ying Y L, Yan B Y, Iqbal P, Preece J A, Wu X Y. Microchim. Acta, 2016,183(1):491-495

    46. [46]

      Wang G L, Zhang B, Wayment J R, Harris J M, White H S. J. Am. Chem. Soc., 2006,128(23):7679-7686

    47. [47]

      Tian K, Decker K, Aksimentiev A, Gu L Q. ACS Nano, 2017,11(2):1204-1213

    48. [48]

      Di Fiori N, Squires A, Bar D, Gilboa T, Moustakas T D, Meller A. Nat. Nanotechnol., 2013,8(12):946-951

    49. [49]

      Nir I, Huttner D, Meller A. Biophys. J., 2015,108(9):2340-2349

    50. [50]

      Plesa C, van Loo N, Dekker C. Nanoscale, 2015,7(32):13605-13609

    51. [51]

      Plesa C, Verschueren D, Pud S, van der Torre J, Ruitenberg J W, Witteveen M J, Jonsson M P, Grosberg A Y, Rabin Y, Dekker C. Nat. Nanotechnol., 2016,11(12):1093-1097

    52. [52]

      Adiga S P, Curtiss L A, Elam J W, Pellin M J, Shih C C, Shih C M, Lin S J, Su Y Y, Gittard S A, Zhang J, Narayan R J. Jom-US, 2008, 60(3):26-32

    53. [53]

      Santos A, Kumeria T, Losic D. TrAC-Trend. Anal. Chem., 2013, 44:25-38

    54. [54]

      de la Escosura-Muniz A, Merkoci A. ACS Nano, 2012,6(9):7556-7583

    55. [55]

      Stroeve P, Ileri N. Trend. Biotechnol., 2011,29(6):259-266

    56. [56]

      Wu S M, Ye W W, Yang M, Taghipoor M, Meissner R, Brugger J, Renaud P. Sens. Actuators B, 2015,216:105-112

    57. [57]

      Kant K, Priest C, Shapter J G, Losic D. Electrochim. Acta, 2014,139:225-231

    58. [58]

      Makarychev-Mikhailov S, Shvarev A, Bakker E. J. Am. Chem. Soc., 2004,126(34):10548-10549

    59. [59]

      Makra I, Brajnovits A, Jagerszki G, Furjes P, Gyurcsanyi R E. Nanoscale, 2017,9(2):739-747

    60. [60]

      Jagerszki G, Takacs A, Bitter I, Gyurcsanyi R E. Angew. Chem. Int. Edit., 2011,123(7):1694-1697

    61. [61]

      Papp S, Jagerszki G, Gyurcsanyi R E. Angew. Chem. Int. Edit., 2018,57(17):4752-4755

    62. [62]

      Xu Y D, Bakker E. Langmuir, 2009,25(1):568-573

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  440
  • HTML全文浏览量:  32
文章相关
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-06-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章